These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 29244864)
1. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae. Nemchinov LG; Shao J; Lee MN; Postnikova OA; Samac DA PLoS One; 2017; 12(12):e0189781. PubMed ID: 29244864 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic analysis of resistant and susceptible alfalfa cultivars (Medicago sativa L.) after thrips infestation. Tu X; Liu Z; Zhang Z BMC Genomics; 2018 Feb; 19(1):116. PubMed ID: 29394889 [TBL] [Abstract][Full Text] [Related]
3. Identification of the defense-related gene Zhang Y; Yao JL; Feng H; Jiang J; Fan X; Jia YF; Wang R; Liu C Hereditas; 2019; 156():14. PubMed ID: 31057347 [TBL] [Abstract][Full Text] [Related]
4. Genetic Mapping of Tolerance to Bacterial Stem Blight Caused by Moya YS; Medina C; Herrera B; Chamba F; Yu LX; Xu Z; Samac DA Plants (Basel); 2023 Dec; 13(1):. PubMed ID: 38202418 [TBL] [Abstract][Full Text] [Related]
5. Gene expression analysis of resistant and susceptible rice cultivars to sheath blight after inoculation with Rhizoctonia solani. Yang X; Gu X; Ding J; Yao L; Gao X; Zhang M; Meng Q; Wei S; Fu J BMC Genomics; 2022 Apr; 23(1):278. PubMed ID: 35392815 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. Matić S; Bagnaresi P; Biselli C; Orru' L; Amaral Carneiro G; Siciliano I; Valé G; Gullino ML; Spadaro D BMC Genomics; 2016 Aug; 17(1):608. PubMed ID: 27515776 [TBL] [Abstract][Full Text] [Related]
7. Soybean NDR1-like proteins bind pathogen effectors and regulate resistance signaling. Selote D; Shine MB; Robin GP; Kachroo A New Phytol; 2014 Apr; 202(2):485-498. PubMed ID: 24372490 [TBL] [Abstract][Full Text] [Related]
8. alfaNET: A Database of Alfalfa-Bacterial Stem Blight Protein-Protein Interactions Revealing the Molecular Features of the Disease-causing Bacteria. Kataria R; Kaundal R Int J Mol Sci; 2021 Aug; 22(15):. PubMed ID: 34361108 [TBL] [Abstract][Full Text] [Related]
9. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. Chen NWG; Sévignac M; Thareau V; Magdelenat G; David P; Ashfield T; Innes RW; Geffroy V New Phytol; 2010 Sep; 187(4):941-956. PubMed ID: 20561214 [TBL] [Abstract][Full Text] [Related]
10. Effect of Medicago sativa Mhb1gene expression on defense response of Arabidopsis thaliana plants. Maassen A; Hennig J Acta Biochim Pol; 2011; 58(3):427-32. PubMed ID: 21725501 [TBL] [Abstract][Full Text] [Related]
11. Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean. Du Q; Yang X; Zhang J; Zhong X; Kim KS; Yang J; Xing G; Li X; Jiang Z; Li Q; Dong Y; Pan H Transgenic Res; 2018 Jun; 27(3):277-288. PubMed ID: 29728957 [TBL] [Abstract][Full Text] [Related]
12. Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Peng H; Chen Z; Fang Z; Zhou J; Xia Z; Gao L; Chen L; Li L; Li T; Zhai W; Zhang W Sci Rep; 2015 Jul; 5():12165. PubMed ID: 26184504 [TBL] [Abstract][Full Text] [Related]
13. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Murray SL; Ingle RA; Petersen LN; Denby KJ Mol Plant Microbe Interact; 2007 Nov; 20(11):1431-8. PubMed ID: 17977154 [TBL] [Abstract][Full Text] [Related]
14. AvrB mutants lose both virulence and avirulence activities on soybean and Arabidopsis. Ong LE; Innes RW Mol Microbiol; 2006 May; 60(4):951-62. PubMed ID: 16677306 [TBL] [Abstract][Full Text] [Related]
15. Convergent evolution of disease resistance gene specificity in two flowering plant families. Ashfield T; Ong LE; Nobuta K; Schneider CM; Innes RW Plant Cell; 2004 Feb; 16(2):309-18. PubMed ID: 14742871 [TBL] [Abstract][Full Text] [Related]
16. Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Mota APZ; Fernandez D; Arraes FBM; Petitot AS; de Melo BP; de Sa MEL; Grynberg P; Saraiva MAP; Guimaraes PM; Brasileiro ACM; Albuquerque EVS; Danchin EGJ; Grossi-de-Sa MF Mol Genet Genomics; 2020 Jul; 295(4):1063-1078. PubMed ID: 32333171 [TBL] [Abstract][Full Text] [Related]
17. Genome-Wide Characterization of NBS-Encoding Genes in Watermelon and Their Potential Association with Gummy Stem Blight Resistance. Hassan MZ; Rahim MA; Jung HJ; Park JI; Kim HT; Nou IS Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30791419 [TBL] [Abstract][Full Text] [Related]
18. RIN4-like proteins mediate resistance protein-derived soybean defense against Pseudomonas syringae. Selote D; Kachroo A Plant Signal Behav; 2010 Nov; 5(11):1453-6. PubMed ID: 21051954 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Dang F; Wang Y; She J; Lei Y; Liu Z; Eulgem T; Lai Y; Lin J; Yu L; Lei D; Guan D; Li X; Yuan Q; He S Physiol Plant; 2014 Mar; 150(3):397-411. PubMed ID: 24032447 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. Postnikova OA; Hult M; Shao J; Skantar A; Nemchinov LG PLoS One; 2015; 10(3):e0123157. PubMed ID: 25822722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]