BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29245485)

  • 1.
    Gerringer ME; Linley TD; Jamieson AJ; Goetze E; Drazen JC
    Zootaxa; 2017 Nov; 4358(1):161-177. PubMed ID: 29245485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Massive Loss of Olfactory Receptors But Not Trace Amine-Associated Receptors in the World's Deepest-Living Fish (
    Jiang H; Du K; Gan X; Yang L; He S
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31717379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiomes of Hadal Fishes across Trench Habitats Contain Similar Taxa and Known Piezophiles.
    Blanton JM; Peoples LM; Gerringer ME; Iacuaniello CM; Gallo ND; Linley TD; Jamieson AJ; Drazen JC; Bartlett DH; Allen EE
    mSphere; 2022 Apr; 7(2):e0003222. PubMed ID: 35306867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour.
    Jamieson AJ; Fujii T; Solan M; Matsumoto AK; Bagley PM; Priede IG
    Proc Biol Sci; 2009 Mar; 276(1659):1037-45. PubMed ID: 19129104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the vision of the hadal snailfish Pseudoliparis swirei through proteomic analysis of the eye.
    Yan G; Lian CA; Lan Y; Qian PY; He L
    Proteomics; 2021 Oct; 21(19):e2100118. PubMed ID: 34329538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation.
    Wang K; Shen Y; Yang Y; Gan X; Liu G; Hu K; Li Y; Gao Z; Zhu L; Yan G; He L; Shan X; Yang L; Lu S; Zeng H; Pan X; Liu C; Yuan Y; Feng C; Xu W; Zhu C; Xiao W; Dong Y; Wang W; Qiu Q; He S
    Nat Ecol Evol; 2019 May; 3(5):823-833. PubMed ID: 30988486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome-level genome assembly of hadal snailfish reveals mechanisms of deep-sea adaptation in vertebrates.
    Xu W; Zhu C; Gao X; Wu B; Xu H; Hu M; Zeng H; Gan X; Feng C; Zheng J; Bo J; He LS; Qiu Q; Wang W; He S; Wang K
    Elife; 2023 Dec; 12():. PubMed ID: 38134226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three new deep-sea species of Thyasiridae (Mollusca: Bivalvia) from the abyssal plain of the northwestern Pacific Ocean and hadal depths of the Kuril-Kamchatka Trench.
    Kamenev GM
    PeerJ; 2020; 8():e10405. PubMed ID: 33304654
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Weston JNJ; Espinosa-Leal L; Wainwright JA; Stewart ECD; González CE; Linley TD; Reid WDK; Hidalgo P; Oliva ME; Ulloa O; Wenzhöfer F; Glud RN; Escribano R; Jamieson AJ
    Mar Biodivers; 2021; 51(3):51. PubMed ID: 34007343
    [No Abstract]   [Full Text] [Related]  

  • 10. On the Success of the Hadal Snailfishes.
    Gerringer ME
    Integr Org Biol; 2019; 1(1):obz004. PubMed ID: 33791521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths.
    Yancey PH; Gerringer ME; Drazen JC; Rowden AA; Jamieson A
    Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4461-5. PubMed ID: 24591588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Characterization of a Novel Gut Symbiont From the Hadal Snailfish.
    Lian CA; Yan GY; Huang JM; Danchin A; Wang Y; He LS
    Front Microbiol; 2019; 10():2978. PubMed ID: 31998265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Community Diversity Within Sediments from Two Geographically Separated Hadal Trenches.
    Peoples LM; Grammatopoulou E; Pombrol M; Xu X; Osuntokun O; Blanton J; Allen EE; Nunnally CC; Drazen JC; Mayor DJ; Bartlett DH
    Front Microbiol; 2019; 10():347. PubMed ID: 30930856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean.
    Welty CJ; Sousa ML; Dunnivant FM; Yancey PH
    Heliyon; 2018 Oct; 4(10):e00840. PubMed ID: 30320235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea.
    Mu Y; Bian C; Liu R; Wang Y; Shao G; Li J; Qiu Y; He T; Li W; Ao J; Shi Q; Chen X
    PLoS Genet; 2021 May; 17(5):e1009530. PubMed ID: 33983934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth.
    Jamieson AJ; Brooks LSR; Reid WDK; Piertney SB; Narayanaswamy BE; Linley TD
    R Soc Open Sci; 2019 Feb; 6(2):180667. PubMed ID: 30891254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes.
    Gerringer ME; Yancey PH; Tikhonova OV; Vavilov NE; Zgoda VG; Davydov DR
    FEBS J; 2020 Dec; 287(24):5394-5410. PubMed ID: 32250538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bait-attending amphipods of the Tonga Trench and depth-stratified population structure in the scavenging amphipod
    Wilson JPA; Schnabel KE; Rowden AA; Peart RA; Kitazato H; Ryan KG
    PeerJ; 2018; 6():e5994. PubMed ID: 30568853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new predator connecting the abyssal with the hadal in the Kuril-Kamchatka Trench, NW Pacific.
    Lörz AN; Jażdżewska AM; Brandt A
    PeerJ; 2018; 6():e4887. PubMed ID: 29892501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.