These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29245798)

  • 1. Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy.
    Wu H; Wang L; Guo N; Shu C; Lu C
    Opt Express; 2017 Dec; 25(25):31210-31220. PubMed ID: 29245798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods.
    Motil A; Davidi R; Hadar R; Tur M
    Opt Express; 2017 Sep; 25(19):22206-22218. PubMed ID: 29041535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the accuracy of BOTDA systems based on the phase spectral response.
    Lopez-Gil A; Soto MA; Angulo-Vinuesa X; Dominguez-Lopez A; Martin-Lopez S; Thévenaz L; Gonzalez-Herraez M
    Opt Express; 2016 Jul; 24(15):17200-14. PubMed ID: 27464170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal processing using artificial neural network for BOTDA sensor system.
    Azad AK; Wang L; Guo N; Tam HY; Lu C
    Opt Express; 2016 Mar; 24(6):6769-82. PubMed ID: 27136863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Averaging-free vector Brillouin optical time domain analyzer assisted by reference probe lightwave.
    Guo N; Zhang X; Jin C; Zhao Z; Wang L; Tam HY; Lu C
    Opt Express; 2018 Dec; 26(26):33993-34001. PubMed ID: 30650829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of Spectral Property Engineering in Distributed Brillouin Fiber Sensing.
    Feng C; Schneider T
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation.
    Li Z; Yan L; Shao L; Pan W; Luo B; Liang J; He H; Zhang Y
    Opt Express; 2016 Mar; 24(5):4824-4833. PubMed ID: 29092310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Vector BOTDA Signal Processing with Probabilistic Machine Learning.
    Venketeswaran A; Lalam N; Lu P; Bukka SR; Buric MP; Wright R
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Crack Detection Using DPP-BOTDA and Crack-Induced Features of the Brillouin Gain Spectrum.
    Zhang D; Yang Y; Xu J; Ni L; Li H
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition.
    Azad AK; Khan FN; Alarashi WH; Guo N; Lau APT; Lu C
    Opt Express; 2017 Jul; 25(14):16534-16549. PubMed ID: 28789157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic strain measurement in Brillouin optical correlation-domain sensing facilitated by dimensionality reduction and support vector machine.
    Yao Y; Mizuno Y
    Opt Express; 2022 Apr; 30(9):15616-15633. PubMed ID: 35473278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced performance in coherent BOTDA sensor with reduced effect of chromatic dispersion.
    Li Z; Yan L; Shao L; Pan W; Luo B
    Opt Express; 2015 Nov; 23(23):30483-90. PubMed ID: 26698526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency shift estimation technique near the hotspot in BOTDA sensor.
    Sun X; Hong X; Wang S; Gao X; Guo H; Li Y; Qiu J; Wu J
    Opt Express; 2019 Apr; 27(9):12899-12913. PubMed ID: 31052823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers.
    Lin W; Yang Z; Hong X; Wang S; Wu J
    Opt Express; 2017 Apr; 25(7):7604-7615. PubMed ID: 28380880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust method for BOTDA sensing information extraction in the Fourier transform domain.
    Yang Z; Zhang P; Zhang H; Dong H; Hu DJJ; Yu K
    Appl Opt; 2023 May; 62(13):3338-3346. PubMed ID: 37132834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Brillouin optical time-domain analysis using frequency-agile and compressed sensing.
    Chu Q; Wang B; Wang H; Ba D; Dong Y
    Opt Lett; 2020 Aug; 45(15):4365-4368. PubMed ID: 32735300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques.
    Wu H; Wang L; Zhao Z; Guo N; Shu C; Lu C
    Opt Express; 2018 Mar; 26(5):5126-5139. PubMed ID: 29529720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy.
    Wang B; Wang L; Guo N; Zhao Z; Yu C; Lu C
    Opt Express; 2019 Feb; 27(3):2530-2543. PubMed ID: 30732290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning-free BOTDA based on ultra-fine digital optical frequency comb.
    Jin C; Guo N; Feng Y; Wang L; Liang H; Li J; Li Z; Yu C; Lu C
    Opt Express; 2015 Feb; 23(4):5277-84. PubMed ID: 25836559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vector optical-chirp-chain Brillouin optical time-domain analyzer based on complex principal component analysis.
    Zhang J; Zheng H; Wu H; Guo N; Yin G; Zhu T
    Opt Express; 2020 Sep; 28(20):28831-28842. PubMed ID: 33114793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.