These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29245878)

  • 21. Intensity-dependent exciton dynamics of (6,5) single-walled carbon nanotubes: momentum selection rules, diffusion, and nonlinear interactions.
    Harrah DM; Schneck JR; Green AA; Hersam MC; Ziegler LD; Swan AK
    ACS Nano; 2011 Dec; 5(12):9898-906. PubMed ID: 22077149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantized bimolecular auger recombination of excitons in single-walled carbon nanotubes.
    Huang L; Krauss TD
    Phys Rev Lett; 2006 Feb; 96(5):057407. PubMed ID: 16486987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability of high-density one-dimensional excitons in carbon nanotubes under high laser excitation.
    Ostojic GN; Zaric S; Kono J; Moore VC; Hauge RH; Smalley RE
    Phys Rev Lett; 2005 Mar; 94(9):097401. PubMed ID: 15783997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct observation of strong light-exciton coupling in thin WS
    Wang Q; Sun L; Zhang B; Chen C; Shen X; Lu W
    Opt Express; 2016 Apr; 24(7):7151-7. PubMed ID: 27137007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vacuum Rabi splitting of exciton-polariton emission in an AlN film.
    Li K; Wang W; Chen Z; Gao N; Yang W; Li W; Chen H; Li S; Li H; Jin P; Kang J
    Sci Rep; 2013 Dec; 3():3551. PubMed ID: 24352032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.
    Liu W; Lee B; Naylor CH; Ee HS; Park J; Johnson AT; Agarwal R
    Nano Lett; 2016 Feb; 16(2):1262-9. PubMed ID: 26784532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
    Balci S; Kocabas C
    Opt Lett; 2015 Jul; 40(14):3424-7. PubMed ID: 26176485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules.
    Hakala TK; Toppari JJ; Kuzyk A; Pettersson M; Tikkanen H; Kunttu H; Törmä P
    Phys Rev Lett; 2009 Jul; 103(5):053602. PubMed ID: 19792498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-resolved surface plasmon polariton coupled exciton and biexciton emission.
    Wang Y; Yang T; Pourmand M; Miller JJ; Tuominen MT; Achermann M
    Opt Express; 2010 Jul; 18(15):15560-8. PubMed ID: 20720936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dispersion relations for coupled surface plasmon-polariton modes excited in multilayer structures.
    Saito H; Namura K; Suzuki M; Kurata H
    Microscopy (Oxf); 2014 Feb; 63(1):85-93. PubMed ID: 24285862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observation of terahertz plasmon and plasmon-polariton splitting in a grating-coupled AlGaN/GaN heterostructure.
    Yu Y; Zheng Z; Qin H; Sun J; Huang Y; Li X; Zhang Z; Wu D; Cai Y; Zhang B; Popov VV
    Opt Express; 2018 Nov; 26(24):31794-31807. PubMed ID: 30650759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes.
    Zakharko Y; Graf A; Zaumseil J
    Nano Lett; 2016 Oct; 16(10):6504-6510. PubMed ID: 27661764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single vs double anti-crossing in the strong coupling between surface plasmons and molecular excitons.
    Tan WJ; Thomas PA; Luxmoore IJ; Barnes WL
    J Chem Phys; 2021 Jan; 154(2):024704. PubMed ID: 33445885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes.
    Korovyanko OJ; Sheng CX; Vardeny ZV; Dalton AB; Baughman RH
    Phys Rev Lett; 2004 Jan; 92(1):017403. PubMed ID: 14754017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherent plasmon-exciton coupling in silver platelet-J-aggregate nanocomposites.
    DeLacy BG; Miller OD; Hsu CW; Zander Z; Lacey S; Yagloski R; Fountain AW; Valdes E; Anquillare E; Soljačić M; Johnson SG; Joannopoulos JD
    Nano Lett; 2015 Apr; 15(4):2588-93. PubMed ID: 25723653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fine-tuning of polariton energies in a tailored plasmon cavity and J-aggregates hybrid system.
    Liang K; Guo J; Huang Y; Yu L
    Nanoscale; 2020 Nov; 12(45):23069-23076. PubMed ID: 33179685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic near-infrared photodetectors enabled by strong light-matter coupling in (6,5) single-walled carbon nanotubes.
    Mischok A; Lüttgens J; Berger F; Hillebrandt S; Tenopala-Carmona F; Kwon S; Murawski C; Siegmund B; Zaumseil J; Gather MC
    J Chem Phys; 2020 Nov; 153(20):201104. PubMed ID: 33261478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.