These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29246039)

  • 1. Computation of forces arising from the polarizable continuum model within the domain-decomposition paradigm.
    Gatto P; Lipparini F; Stamm B
    J Chem Phys; 2017 Dec; 147(22):224108. PubMed ID: 29246039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linearly scaling computation of ddPCM solvation energy and forces using the fast multipole method.
    Mikhalev A; Nottoli M; Stamm B
    J Chem Phys; 2022 Sep; 157(11):114103. PubMed ID: 36137796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives.
    Lipparini F; Stamm B; Cancès E; Maday Y; Mennucci B
    J Chem Theory Comput; 2013 Aug; 9(8):3637-48. PubMed ID: 26584117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A variational formulation of the polarizable continuum model.
    Lipparini F; Scalmani G; Mennucci B; Cancès E; Caricato M; Frisch MJ
    J Chem Phys; 2010 Jul; 133(1):014106. PubMed ID: 20614958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new discretization for the polarizable continuum model within the domain decomposition paradigm.
    Stamm B; Cancès E; Lipparini F; Maday Y
    J Chem Phys; 2016 Feb; 144(5):054101. PubMed ID: 26851902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving linear scaling in computational cost for a fully polarizable MM/continuum embedding.
    Caprasecca S; Jurinovich S; Lagardère L; Stamm B; Lipparini F
    J Chem Theory Comput; 2015 Feb; 11(2):694-704. PubMed ID: 26579603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy, Structures, and Response Properties with a Fully Coupled QM/AMOEBA/ddCOSMO Implementation.
    Nottoli M; Nifosì R; Mennucci B; Lipparini F
    J Chem Theory Comput; 2021 Sep; 17(9):5661-5672. PubMed ID: 34476941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: new energy gradients and molecular surface tessellation.
    Li H; Jensen JH
    J Comput Chem; 2004 Sep; 25(12):1449-62. PubMed ID: 15224389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Approach. 1. Theory and Implementation.
    Lipparini F; Barone V
    J Chem Theory Comput; 2011 Nov; 7(11):3711-24. PubMed ID: 26598266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General formulation of polarizable embedding models and of their coupling.
    Nottoli M; Lipparini F
    J Chem Phys; 2020 Dec; 153(22):224108. PubMed ID: 33317291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach.
    Klamt A; Moya C; Palomar J
    J Chem Theory Comput; 2015 Sep; 11(9):4220-5. PubMed ID: 26575917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Calculations in Solution of Energies, Structures, and Properties with a Domain Decomposition Polarizable Continuum Model.
    Nottoli M; Stamm B; Scalmani G; Lipparini F
    J Chem Theory Comput; 2019 Nov; 15(11):6061-6073. PubMed ID: 31509412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy decomposition analysis of bonding and nonbonding interactions in solution.
    Su P; Liu H; Wu W
    J Chem Phys; 2012 Jul; 137(3):034111. PubMed ID: 22830687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brueckner doubles coupled cluster method with the polarizable continuum model of solvation.
    Caricato M; Scalmani G; Frisch MJ
    J Chem Phys; 2011 Jun; 134(24):244113. PubMed ID: 21721618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarizable molecular dynamics in a polarizable continuum solvent.
    Lipparini F; Lagardère L; Raynaud C; Stamm B; Cancès E; Mennucci B; Schnieders M; Ren P; Maday Y; Piquemal JP
    J Chem Theory Comput; 2015 Feb; 11(2):623-34. PubMed ID: 26516318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The second derivative of the electronic energy with respect to the compression scaling factor in the XP-PCM model: Theory and applications to compression response functions of atoms.
    Cammi R; Chen B
    J Comput Chem; 2022 Jun; 43(17):1176-1185. PubMed ID: 35506517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear scaling computation of forces for the domain-decomposition linear Poisson-Boltzmann method.
    Jha A; Nottoli M; Mikhalev A; Quan C; Stamm B
    J Chem Phys; 2023 Mar; 158(10):104105. PubMed ID: 36922147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.
    Cammi R
    J Chem Phys; 2009 Oct; 131(16):164104. PubMed ID: 19894924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation energies in solution: the fully polarizable QM/MM/PCM method.
    Steindal AH; Ruud K; Frediani L; Aidas K; Kongsted J
    J Phys Chem B; 2011 Mar; 115(12):3027-37. PubMed ID: 21391548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent non-equilibrium dielectric response in QM/continuum approaches.
    Ding F; Lingerfelt DB; Mennucci B; Li X
    J Chem Phys; 2015 Jan; 142(3):034120. PubMed ID: 25612702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.