These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29246039)

  • 41. On the Importance of the Orbital Relaxation in Ground-State Coupled Cluster Calculations in Solution with the Polarizable Continuum Model of Solvation.
    Caricato M; Scalmani G
    J Chem Theory Comput; 2011 Dec; 7(12):4012-8. PubMed ID: 26598347
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CCSD-PCM: improving upon the reference reaction field approximation at no cost.
    Caricato M
    J Chem Phys; 2011 Aug; 135(7):074113. PubMed ID: 21861562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perturbative many-body expansion for electrostatic energy and field for system of polarizable charged spherical ions in a dielectric medium.
    Freed KF
    J Chem Phys; 2014 Jul; 141(3):034115. PubMed ID: 25053309
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements.
    Bugeanu M; Di Remigio R; Mozgawa K; Reine SS; Harbrecht H; Frediani L
    Phys Chem Chem Phys; 2015 Dec; 17(47):31566-81. PubMed ID: 26256401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantum, classical, and hybrid QM/MM calculations in solution: general implementation of the ddCOSMO linear scaling strategy.
    Lipparini F; Scalmani G; Lagardère L; Stamm B; Cancès E; Maday Y; Piquemal JP; Frisch MJ; Mennucci B
    J Chem Phys; 2014 Nov; 141(18):184108. PubMed ID: 25399133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method in the polarizable continuum model: theory of the solvent effect on the electronic excitation of molecules in solution.
    Cammi R; Fukuda R; Ehara M; Nakatsuji H
    J Chem Phys; 2010 Jul; 133(2):024104. PubMed ID: 20632745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The cavity electromagnetic field within the polarizable continuum model of solvation.
    Pipolo S; Corni S; Cammi R
    J Chem Phys; 2014 Apr; 140(16):164114. PubMed ID: 24784260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Including implicit solvation in the bond capacity polarization model.
    Poier PP; Jensen F
    J Chem Phys; 2019 Sep; 151(11):114118. PubMed ID: 31542002
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the accuracy of the general, state-specific polarizable-continuum model for the description of correlated ground- and excited states in solution.
    Mewes JM; Herbert JM; Dreuw A
    Phys Chem Chem Phys; 2017 Jan; 19(2):1644-1654. PubMed ID: 27995259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward a Unified Modeling of Environment and Bridge-Mediated Contributions to Electronic Energy Transfer: A Fully Polarizable QM/MM/PCM Approach.
    Caprasecca S; Curutchet C; Mennucci B
    J Chem Theory Comput; 2012 Nov; 8(11):4462-73. PubMed ID: 26605606
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solvent Effects on Electronically Excited States Using the Conductor-Like Screening Model and the Second-Order Correlated Method ADC(2).
    Lunkenheimer B; Köhn A
    J Chem Theory Comput; 2013 Feb; 9(2):977-94. PubMed ID: 26588741
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model.
    Cossi M; Rega N; Scalmani G; Barone V
    J Comput Chem; 2003 Apr; 24(6):669-81. PubMed ID: 12666158
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach.
    Barone V; Carnimeo I; Scalmani G
    J Chem Theory Comput; 2013 Apr; 9(4):2052-71. PubMed ID: 26583552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An extrapolation method for computing protein solvation energies based on density fragmentation of a graphical surface tessellation.
    Menikarachchi LC; Gascón JA
    J Mol Graph Model; 2011 Sep; 30():38-45. PubMed ID: 21715202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model.
    Zheng Z; Brédas JL; Coropceanu V
    J Phys Chem Lett; 2016 Jul; 7(13):2616-21. PubMed ID: 27338105
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory.
    Chiba M; Fedorov DG; Kitaura K
    J Comput Chem; 2008 Dec; 29(16):2667-76. PubMed ID: 18484637
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantum Chemistry for Solvated Molecules on Graphical Processing Units Using Polarizable Continuum Models.
    Liu F; Luehr N; Kulik HJ; Martínez TJ
    J Chem Theory Comput; 2015 Jul; 11(7):3131-44. PubMed ID: 26575750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantum mechanical polarizable continuum model approach to the Kerr effect of pure liquids.
    Cappelli C; Mennucci B; Cammi R; Rizzo A
    J Phys Chem B; 2005 Oct; 109(39):18706-14. PubMed ID: 16853406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.