BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29246438)

  • 1. Nano-scale and molecular-level understanding of wet-milled indomethacin/poloxamer 407 nanosuspension with TEM, suspended-state NMR, and Raman measurements.
    Kuroiwa Y; Higashi K; Ueda K; Yamamoto K; Moribe K
    Int J Pharm; 2018 Feb; 537(1-2):30-39. PubMed ID: 29246438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of wet milling process on the solid state of indomethacin and simvastatin.
    Sharma P; Denny WA; Garg S
    Int J Pharm; 2009 Oct; 380(1-2):40-8. PubMed ID: 19576976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evaluation of molecular States of piroxicam/poloxamer nanosuspension by suspended-state NMR and Raman spectroscopies.
    Hasegawa Y; Higashi K; Yamamoto K; Moribe K
    Mol Pharm; 2015 May; 12(5):1564-72. PubMed ID: 25849345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of amorphous indomethacin nanoparticles by aqueous wet bead milling and in situ measurement of their increased saturation solubility.
    Colombo M; Minussi C; Orthmann S; Staufenbiel S; Bodmeier R
    Eur J Pharm Biopharm; 2018 Apr; 125():159-168. PubMed ID: 29371046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosuspensions of poorly soluble drugs: preparation and development by wet milling.
    Liu P; Rong X; Laru J; van Veen B; Kiesvaara J; Hirvonen J; Laaksonen T; Peltonen L
    Int J Pharm; 2011 Jun; 411(1-2):215-22. PubMed ID: 21458552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from Amorphous Cyclosporin A Nanoparticles to Size-Reduced Stable Nanocrystals in a Poloxamer 407 Solution.
    Chen Z; Higashi K; Ueda K; Moribe K
    Mol Pharm; 2022 Jan; 19(1):188-199. PubMed ID: 34843257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic Investigation of the Formation and Disruption of Hydrogen Bonds in Pharmaceutical Semicrystalline Dispersions.
    Van Duong T; Reekmans G; Venkatesham A; Van Aerschot A; Adriaensens P; Van Humbeeck J; Van den Mooter G
    Mol Pharm; 2017 May; 14(5):1726-1741. PubMed ID: 28363028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle agglomerates of indomethacin: The role of poloxamers and matrix former on their dissolution and aerosolisation efficiency.
    Malamatari M; Somavarapu S; Bloxham M; Buckton G
    Int J Pharm; 2015 Nov; 495(1):516-526. PubMed ID: 26364709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryo-TEM and AFM Observation of the Time-Dependent Evolution of Amorphous Probucol Nanoparticles Formed by the Aqueous Dispersion of Ternary Solid Dispersions.
    Zhao Z; Katai H; Higashi K; Ueda K; Kawakami K; Moribe K
    Mol Pharm; 2019 May; 16(5):2184-2198. PubMed ID: 30925218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles.
    La SB; Okano T; Kataoka K
    J Pharm Sci; 1996 Jan; 85(1):85-90. PubMed ID: 8926590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Acceleration of Crystal Growth of Indomethacin Polymorphs by Low-Concentration Poly(ethylene oxide).
    Shi Q; Zhang J; Zhang C; Jiang J; Tao J; Zhou D; Cai T
    Mol Pharm; 2017 Dec; 14(12):4694-4704. PubMed ID: 29125764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Monitoring of the Agglomeration and Sedimentation of Indomethacin Nanosuspensions Using T
    Ono T; Okada K; Tsuchiya M; Hayashi Y; Kumada S; Onuki Y
    Chem Pharm Bull (Tokyo); 2023; 71(8):665-669. PubMed ID: 37532537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles.
    Fini A; Cavallari C; Ospitali F
    Eur J Pharm Biopharm; 2008 Sep; 70(1):409-20. PubMed ID: 18621516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt Crystallization of Indomethacin Polymorphs in the Presence of Poly(ethylene oxide): Selective Enrichment of the Polymer at the Crystal-Liquid Interface.
    Zhang J; Shi Q; Guo M; Liu Z; Cai T
    Mol Pharm; 2020 Jun; 17(6):2064-2071. PubMed ID: 32298128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolution study of nanocrystal powders of a poorly soluble drug by UV imaging and channel flow methods.
    Sarnes A; Østergaard J; Jensen SS; Aaltonen J; Rantanen J; Hirvonen J; Peltonen L
    Eur J Pharm Sci; 2013 Nov; 50(3-4):511-9. PubMed ID: 23999036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray Absorption Near-Edge Spectroscopy Analysis of Indomethacin in Crystalline Forms and in Amorphous Solid Dispersions.
    Suzuki H; Iwata M; Ito M; Noguchi S
    Mol Pharm; 2021 Sep; 18(9):3475-3483. PubMed ID: 34372659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of inhibitory effects of polymers on indomethacin precipitation in solution and amorphous solid crystallization based on molecular interaction.
    Chauhan H; Kuldipkumar A; Barder T; Medek A; Gu CH; Atef E
    Pharm Res; 2014 Feb; 31(2):500-15. PubMed ID: 24122167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of drug-loaded edible carrier substrates from nanosuspensions by flexographic printing.
    Palo M; Kolakovic R; Laaksonen T; Määttänen A; Genina N; Salonen J; Peltonen J; Sandler N
    Int J Pharm; 2015 Oct; 494(2):603-610. PubMed ID: 25601198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic screening of different surface modifiers for the production of physically stable nanosuspensions.
    Lestari ML; Müller RH; Möschwitzer JP
    J Pharm Sci; 2015 Mar; 104(3):1128-40. PubMed ID: 25630623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Scalability of Wet Ball Milling for The Production of Nanosuspensions.
    Lestari MLAD; Müller RH; Möschwitzer JP
    Pharm Nanotechnol; 2019; 7(2):147-161. PubMed ID: 30931866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.