These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29246582)

  • 21. Ecotoxicological and biochemical mixture effects of an herbicide and a metal at the marine primary producer diatom Thalassiosira weissflogii and the primary consumer copepod Acartia tonsa.
    Filimonova V; Nys C; De Schamphelaere KAC; Gonçalves F; Marques JC; Gonçalves AMM; De Troch M
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):22180-22195. PubMed ID: 29804247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acartia tonsa eggs as a biomonitor to evaluate bioavailability/toxicity of persistent contaminants in anoxic/sulfidic conditions: The case of cadmium and nickel.
    Sei S; Invidia M; Giannetto M; Gorbi G
    Ecotoxicol Environ Saf; 2016 Oct; 132():1-8. PubMed ID: 27235834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa.
    Bellas J; Gil I
    Environ Pollut; 2020 May; 260():114059. PubMed ID: 32004970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acute toxicity of eight oil spill response chemicals to temperate, boreal, and Arctic species.
    Hansen BH; Altin D; Bonaunet K; Overjordet IB
    J Toxicol Environ Health A; 2014; 77(9-11):495-505. PubMed ID: 24754387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of acute and chronic toxicity bioassays using the pelagic copepod Gladioferens pectinatus.
    Charry MP; Northcott GL; Gaw S; Keesing V; Costello MJ; Tremblay LA
    Ecotoxicol Environ Saf; 2019 Jun; 174():611-617. PubMed ID: 30875554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of the relative sensitivity of the copepods Acartia tonsa and Acartia clausi exposed to sediment-derived elutriates from the Bagnoli-Coroglio industrial area.
    Carotenuto Y; Vitiello V; Gallo A; Libralato G; Trifuoggi M; Toscanesi M; Lofrano G; Esposito F; Buttino I
    Mar Environ Res; 2020 Mar; 155():104878. PubMed ID: 31975692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute silver toxicity in the euryhaline copepod Acartia tonsa: influence of salinity and food.
    Pedroso MS; Bersano JG; Bianchini A
    Environ Toxicol Chem; 2007 Oct; 26(10):2158-65. PubMed ID: 17867869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in free amino acid content during naupliar development of the Calanoid copepod Acartia tonsa.
    Rayner TA; Jørgensen NOG; Drillet G; Hansen BW
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Aug; 210():1-6. PubMed ID: 28483512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of acute silver toxicity in the euryhaline copepod Acartia tonsa.
    Pedroso MS; Pinho GL; Rodrigues SC; Bianchini A
    Aquat Toxicol; 2007 May; 82(3):173-80. PubMed ID: 17374407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acute waterborne copper toxicity to the euryhaline copepod Acartia tonsa at different salinities: influence of natural freshwater and marine dissolved organic matter.
    Monteiro SC; Pinho GL; Hoffmann K; Barcarolli IF; Bianchini A
    Environ Toxicol Chem; 2013 Jun; 32(6):1412-9. PubMed ID: 23427042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Food quality effects on copepod growth and development: implications for bioassays in ecotoxicological testing.
    Dahl U; Lind CR; Gorokhova E; Eklund B; Breitholtz M
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):351-7. PubMed ID: 18514311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Genome and mRNA Transcriptome of the Cosmopolitan Calanoid Copepod Acartia tonsa Dana Improve the Understanding of Copepod Genome Size Evolution.
    Jørgensen TS; Petersen B; Petersen HCB; Browne PD; Prost S; Stillman JH; Hansen LH; Hansen BW
    Genome Biol Evol; 2019 May; 11(5):1440-1450. PubMed ID: 30918947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of short- and long-term exposures to copper on lethal and reproductive endpoints of the harpacticoid copepod Tigriopus fulvus.
    Biandolino F; Parlapiano I; Faraponova O; Prato E
    Ecotoxicol Environ Saf; 2018 Jan; 147():327-333. PubMed ID: 28858705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toxicity of silver, zinc, copper, and nickel to the copepod Acartia tonsa exposed via a phytoplankton diet.
    Bielmyer GK; Grosell M; Brixti KV
    Environ Sci Technol; 2006 Mar; 40(6):2063-8. PubMed ID: 16570637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal tolerance of Acartia tonsa: In relation to acclimation temperature and life stage.
    Sunar MC; Kır M
    J Therm Biol; 2021 Dec; 102():103116. PubMed ID: 34863480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of concentration and size of suspended particles on the ingestion, reproduction and mortality rates of the copepod, Acartia tonsa.
    Sew G; Calbet A; Drillet G; Todd PA
    Mar Environ Res; 2018 Sep; 140():251-264. PubMed ID: 30042061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing sediment quality at tropical mangrove areas for using as reference sites in ecotoxicological bioassays.
    Souza-Santos LP; Silva CC; Barcellos RL; Souza Neto JA
    Mar Pollut Bull; 2024 Aug; 205():116607. PubMed ID: 38896957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of a biological multilevel response approach in the copepod Acartia tonsa for toxicity testing of three oil Water Accommodated Fractions.
    Hafez T; Bilbao D; Etxebarria N; Duran R; Ortiz-Zarragoitia M
    Mar Environ Res; 2021 Jul; 169():105378. PubMed ID: 34102532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Life stage-specific effects of tire particle leachates on the cosmopolitan planktonic copepod Acartia tonsa.
    Moreira W; Alonso O; Paule A; Martínez I; Le Du-Carreé J; Almeda R
    Environ Pollut; 2024 Feb; 343():123256. PubMed ID: 38171424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological and molecular responses of the copepods Acartia clausi and Acartia tonsa to nickel nanoparticles and nickel chloride.
    Rotolo F; Vitiello V; Souissi S; Carotenuto Y; Buttino I
    Chemosphere; 2024 Jul; 360():142302. PubMed ID: 38763394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.