BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 29247179)

  • 41. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acceptorless or Transfer Dehydrogenation of Glycerol Catalyzed by Base Metal Salt Cobaltous Chloride - Facile Access to Lactic Acid and Hydrogen or Isopropanol.
    Narjinari H; Dhole S; Kumar A
    Chemistry; 2024 Jan; 30(1):e202302686. PubMed ID: 37811834
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acceptorless Dehydrogenation of Hydrocarbons by Noble-Metal-Free Hybrid Catalyst System.
    Fuse H; Kojima M; Mitsunuma H; Kanai M
    Org Lett; 2018 Apr; 20(7):2042-2045. PubMed ID: 29558157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Manganese-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols With Sulfones: A Tool To Access Highly Substituted Vinyl Sulfones.
    Waiba S; Barman MK; Maji B
    J Org Chem; 2019 Jan; 84(2):973-982. PubMed ID: 30588804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ruthenium-Catalyzed Ammonia Borane Dehydrogenation: Mechanism and Utility.
    Zhang X; Kam L; Trerise R; Williams TJ
    Acc Chem Res; 2017 Jan; 50(1):86-95. PubMed ID: 28032510
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of active catalysts for the acceptorless dehydrogenation of alcohols to carbonyls.
    Wang T; Sha J; Sabbe M; Sautet P; Pera-Titus M; Michel C
    Nat Commun; 2021 Aug; 12(1):5100. PubMed ID: 34429417
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.
    Miyamura H; Kobayashi S
    Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances in the synthesis of N-heteroarenes
    Bera A; Bera S; Banerjee D
    Chem Commun (Camb); 2021 Dec; 57(97):13042-13058. PubMed ID: 34781335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Progressive study on ruthenium catalysis for de(hydrogenative) alkylation and alkenylation using alcohols as a sustainable source.
    Sharma R; Samanta A; Sardar B; Roy M; Srimani D
    Org Biomol Chem; 2022 Oct; 20(41):7998-8030. PubMed ID: 36200985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sustainable Pathways to Pyrroles through Iron-Catalyzed N-Heterocyclization from Unsaturated Diols and Primary Amines.
    Yan T; Barta K
    ChemSusChem; 2016 Sep; 9(17):2321-5. PubMed ID: 27493031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidant-free conversion of primary amines to nitriles.
    Tseng KN; Rizzi AM; Szymczak NK
    J Am Chem Soc; 2013 Nov; 135(44):16352-5. PubMed ID: 24144014
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Co(II) PCP Pincer Complexes as Catalysts for the Alkylation of Aromatic Amines with Primary Alcohols.
    Mastalir M; Tomsu G; Pittenauer E; Allmaier G; Kirchner K
    Org Lett; 2016 Jul; 18(14):3462-5. PubMed ID: 27356282
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Catalytic Acceptorless Dehydrogenation of Aliphatic Alcohols.
    Fuse H; Mitsunuma H; Kanai M
    J Am Chem Soc; 2020 Mar; 142(9):4493-4499. PubMed ID: 32057240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoscale boron carbonitride semiconductors for photoredox catalysis.
    Zheng M; Cai W; Fang Y; Wang X
    Nanoscale; 2020 Feb; 12(6):3593-3604. PubMed ID: 32020138
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acceptorless Photocatalytic Dehydrogenation of Furfuryl Alcohol (FOL) to Furfural (FAL) and Furoic Acid (FA) over Ti
    Wang J; Liu X; Li Z
    Chem Asian J; 2021 Oct; 16(19):2932-2938. PubMed ID: 34296809
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tandem transformations and multicomponent reactions utilizing alcohols following dehydrogenation strategy.
    Paul B; Maji M; Chakrabarti K; Kundu S
    Org Biomol Chem; 2020 Mar; 18(12):2193-2214. PubMed ID: 32134063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acceptorless dehydrogenation of alcohols to carboxylic acids by palladium nanoparticles supported on NiO: delving into metal-support cooperation in catalysis.
    Bordoloi K; Kalita GD; Das P
    Dalton Trans; 2022 Jun; 51(25):9922-9934. PubMed ID: 35723167
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atomically Dispersed Co Clusters Anchored on N-doped Carbon Nanotubes for Efficient Dehydrogenation of Alcohols and Subsequent Conversion to Carboxylic Acids.
    Li B; Fang J; Xu D; Zhao H; Zhu H; Zhang F; Dong Z
    ChemSusChem; 2021 Oct; 14(20):4536-4545. PubMed ID: 34370902
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Supported Cobalt Catalysts for Acceptorless Alcohol Dehydrogenation.
    Kaźmierczak K; Pinel C; Loridant S; Besson M; Michel C; Perret N
    Chempluschem; 2020 Jun; 85(6):1315-1324. PubMed ID: 32567812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.