These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 29247206)
21. Next-generation sequencing of dried blood spot specimens: a novel approach to HIV drug-resistance surveillance. Ji H; Li Y; Graham M; Liang BB; Pilon R; Tyson S; Peters G; Tyler S; Merks H; Bertagnolio S; Soto-Ramirez L; Sandstrom P; Brooks J Antivir Ther; 2011; 16(6):871-8. PubMed ID: 21900719 [TBL] [Abstract][Full Text] [Related]
22. Sedaghatian-type spondylometaphyseal dysplasia: Whole exome sequencing in neonatal dry blood spots enabled identification of a novel variant in GPX4. Fedida A; Ben Harouch S; Kalfon L; Abunassar Z; Omari H; Mandel H; Falik-Zaccai TC Eur J Med Genet; 2020 Nov; 63(11):104020. PubMed ID: 32827718 [TBL] [Abstract][Full Text] [Related]
23. Cost-effective and scalable DNA extraction method from dried blood spots. Saavedra-Matiz CA; Isabelle JT; Biski CK; Duva SJ; Sweeney ML; Parker AL; Young AJ; Diantonio LL; Krein LM; Nichols MJ; Caggana M Clin Chem; 2013 Jul; 59(7):1045-51. PubMed ID: 23509109 [TBL] [Abstract][Full Text] [Related]
24. Future of Dutch NGS-Based Newborn Screening: Exploring the Technical Possibilities and Assessment of a Variant Classification Strategy. Kiewiet G; Westra D; de Boer EN; van Berkel E; Hofste TGJ; van Zweeden M; Derks RC; Leijsten NFA; Ruiterkamp-Versteeg MHA; Charbon B; Johansson L; Bos-Kruizinga J; Veenstra IJ; de Sain-van der Velden MGM; Voorhoeve E; Heiner-Fokkema MR; van Spronsen F; Sikkema-Raddatz B; Nelen M Int J Neonatal Screen; 2024 Mar; 10(1):. PubMed ID: 38535124 [TBL] [Abstract][Full Text] [Related]
25. Genetic testing for monogenic diabetes using targeted next-generation sequencing in patients with maturity-onset diabetes of the young. Szopa M; Ludwig-Gałęzowska A; Radkowski P; Skupień J; Zapała B; Płatek T; Klupa T; Kieć-Wilk B; Borowiec M; Młynarski W; Wołkow P; Małecki MT Pol Arch Med Wewn; 2015; 125(11):845-51. PubMed ID: 26552609 [TBL] [Abstract][Full Text] [Related]
26. DNA Methylation Analysis from Blood Spots: Increasing Yield and Quality for Genome-Wide and Locus-Specific Methylation Analysis. Ghantous A; Hernandez-Vargas H; Herceg Z Methods Mol Biol; 2018; 1708():605-619. PubMed ID: 29224166 [TBL] [Abstract][Full Text] [Related]
27. Next generation sequencing as a follow-up test in an expanded newborn screening programme. Smon A; Repic Lampret B; Groselj U; Zerjav Tansek M; Kovac J; Perko D; Bertok S; Battelino T; Trebusak Podkrajsek K Clin Biochem; 2018 Feb; 52():48-55. PubMed ID: 29111448 [TBL] [Abstract][Full Text] [Related]
28. Quantification of DNA in Neonatal Dried Blood Spots by Adenine Tandem Mass Spectrometry. Durie D; Yeh E; McIntosh N; Fisher L; Bulman DE; Birnboim HC; Chakraborty P; Al-Dirbashi OY Anal Chem; 2018 Jan; 90(1):801-806. PubMed ID: 29190072 [TBL] [Abstract][Full Text] [Related]
29. Gene mutation spectrum and genotype-phenotype correlation in a cohort of Chinese osteogenesis imperfecta patients revealed by targeted next generation sequencing. Liu Y; Asan ; Ma D; Lv F; Xu X; Wang J; Xia W; Jiang Y; Wang O; Xing X; Yu W; Wang J; Sun J; Song L; Zhu Y; Yang H; Wang J; Li M Osteoporos Int; 2017 Oct; 28(10):2985-2995. PubMed ID: 28725987 [TBL] [Abstract][Full Text] [Related]
30. Molecular analysis of the CYP21A2 gene in dried blood spot samples. Marino S; Perez Garrido N; Ramírez P; Pujana M; Dratler G; Belgorosky A; Marino R Medicina (B Aires); 2020; 80(3):197-202. PubMed ID: 32442933 [TBL] [Abstract][Full Text] [Related]
32. Newborn Screening for Mucopolysaccharidoses: Results of a Pilot Study with 100 000 Dried Blood Spots. Scott CR; Elliott S; Hong X; Huang JY; Kumar AB; Yi F; Pendem N; Chennamaneni NK; Gelb MH J Pediatr; 2020 Jan; 216():204-207. PubMed ID: 31732130 [TBL] [Abstract][Full Text] [Related]
33. The use of mass spectrometry to analyze dried blood spots. Wagner M; Tonoli D; Varesio E; Hopfgartner G Mass Spectrom Rev; 2016; 35(3):361-438. PubMed ID: 25252132 [TBL] [Abstract][Full Text] [Related]
34. Application of a next-generation sequencing (NGS) panel in newborn screening efficiently identifies inborn disorders of neonates. Huang X; Wu D; Zhu L; Wang W; Yang R; Yang J; He Q; Zhu B; You Y; Xiao R; Zhao Z Orphanet J Rare Dis; 2022 Feb; 17(1):66. PubMed ID: 35193651 [TBL] [Abstract][Full Text] [Related]
35. A pilot study of expanded newborn screening for 573 genes related to severe inherited disorders in China: results from 1,127 newborns. Luo X; Sun Y; Xu F; Guo J; Li L; Lin Z; Ye J; Gu X; Yu Y Ann Transl Med; 2020 Sep; 8(17):1058. PubMed ID: 33145277 [TBL] [Abstract][Full Text] [Related]
36. High throughput sequencing of T-cell receptor repertoire using dry blood spots. Wu SG; Pan W; Liu H; Byrne-Steele ML; Brown B; Depinet M; Hou X; Han J; Li S J Transl Med; 2019 Feb; 17(1):47. PubMed ID: 30777078 [TBL] [Abstract][Full Text] [Related]
37. A multicenter prospective study of next-generation sequencing-based newborn screening for monogenic genetic diseases in China. Yang RL; Qian GL; Wu DW; Miao JK; Yang X; Wu BQ; Yan YQ; Li HB; Mao XM; He J; Shen H; Zou H; Xue SY; Li XZ; Niu TT; Xiao R; Zhao ZY World J Pediatr; 2023 Jul; 19(7):663-673. PubMed ID: 36847978 [TBL] [Abstract][Full Text] [Related]
38. Applying targeted next generation sequencing to dried blood spot specimens from suspicious cases identified by tandem mass spectrometry-based newborn screening. Qian J; Wang X; Liu J; Zhong J; Le Y; Melchior Tellier LCA; Liu C; Jiang P; Gao R; Wang Y J Pediatr Endocrinol Metab; 2017 Aug; 30(9):979-988. PubMed ID: 28771436 [TBL] [Abstract][Full Text] [Related]