BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29247216)

  • 1. Vitamin K epoxide reductase and its paralogous enzyme have different structures and functions.
    Sinhadri BCS; Jin DY; Stafford DW; Tie JK
    Sci Rep; 2017 Dec; 7(1):17632. PubMed ID: 29247216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved loop cysteines of vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) are involved in its active site regeneration.
    Tie JK; Jin DY; Stafford DW
    J Biol Chem; 2014 Mar; 289(13):9396-407. PubMed ID: 24532791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells.
    Tie JK; Jin DY; Tie K; Stafford DW
    J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional insights into enzymes of the vitamin K cycle.
    Tie JK; Stafford DW
    J Thromb Haemost; 2016 Feb; 14(2):236-47. PubMed ID: 26663892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation.
    Rishavy MA; Usubalieva A; Hallgren KW; Berkner KL
    J Biol Chem; 2011 Mar; 286(9):7267-78. PubMed ID: 20978134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of oral anticoagulants with vitamin K epoxide reductase in its native milieu.
    Chen X; Jin DY; Stafford DW; Tie JK
    Blood; 2018 Nov; 132(18):1974-1984. PubMed ID: 30089628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines.
    Jin DY; Tie JK; Stafford DW
    Biochemistry; 2007 Jun; 46(24):7279-83. PubMed ID: 17523679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of vitamin K epoxide reductase.
    Tie JK; Stafford DW
    Vitam Horm; 2008; 78():103-30. PubMed ID: 18374192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.
    Cao Z; van Lith M; Mitchell LJ; Pringle MA; Inaba K; Bulleid NJ
    Biochem J; 2016 Apr; 473(7):851-8. PubMed ID: 26772871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reoxidation of the Thiol-Disulfide Oxidoreductase MdbA by a Bacterial Vitamin K Epoxide Reductase in the Biofilm-Forming Actinobacterium Actinomyces oris.
    Luong TT; Reardon-Robinson ME; Siegel SD; Ton-That H
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28289087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human vitamin K epoxide reductase and its bacterial homologue have different membrane topologies and reaction mechanisms.
    Tie JK; Jin DY; Stafford DW
    J Biol Chem; 2012 Oct; 287(41):33945-55. PubMed ID: 22923610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed measurement of variant abundance and activity reveals VKOR topology, active site and human variant impact.
    Chiasson MA; Rollins NJ; Stephany JJ; Sitko KA; Matreyek KA; Verby M; Sun S; Roth FP; DeSloover D; Marks DS; Rettie AE; Fowler DM
    Elife; 2020 Sep; 9():. PubMed ID: 32870157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family.
    Bevans CG; Krettler C; Reinhart C; Watzka M; Oldenburg J
    Nutrients; 2015 Jul; 7(8):6224-49. PubMed ID: 26230708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases.
    Shen G; Li C; Cao Q; Megta AK; Li S; Gao M; Liu H; Shen Y; Chen Y; Yu H; Li S; Li W
    FEBS J; 2022 Aug; 289(15):4564-4579. PubMed ID: 35113495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Warfarin and vitamin K compete for binding to Phe55 in human VKOR.
    Czogalla KJ; Biswas A; Höning K; Hornung V; Liphardt K; Watzka M; Oldenburg J
    Nat Struct Mol Biol; 2017 Jan; 24(1):77-85. PubMed ID: 27941861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D; Hutson SM; Wallin R
    J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1.
    Van Horn WD
    Crit Rev Biochem Mol Biol; 2013; 48(4):357-72. PubMed ID: 23631591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy.
    Hammed A; Matagrin B; Spohn G; Prouillac C; Benoit E; Lattard V
    J Biol Chem; 2013 Oct; 288(40):28733-42. PubMed ID: 23928358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle.
    Oldenburg J; Bevans CG; Müller CR; Watzka M
    Antioxid Redox Signal; 2006; 8(3-4):347-53. PubMed ID: 16677080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.