These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 29247462)

  • 21. Visual experience sculpts whole-cortex spontaneous infraslow activity patterns through an Arc-dependent mechanism.
    Kraft AW; Mitra A; Bauer AQ; Snyder AZ; Raichle ME; Culver JP; Lee JM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9952-E9961. PubMed ID: 29087327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient and localized optogenetic activation of somatostatin-interneurons in mouse visual cortex abolishes long-term cortical plasticity due to vision loss.
    Scheyltjens I; Vreysen S; Van den Haute C; Sabanov V; Balschun D; Baekelandt V; Arckens L
    Brain Struct Funct; 2018 Jun; 223(5):2073-2095. PubMed ID: 29372324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing.
    Teichert M; Bolz J
    Neuroimage; 2017 Oct; 159():459-472. PubMed ID: 28735013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adult visual experience promotes recovery of primary visual cortex from long-term monocular deprivation.
    Fischer QS; Aleem S; Zhou H; Pham TA
    Learn Mem; 2007 Sep; 14(9):573-80. PubMed ID: 17761542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation.
    McCurry CL; Shepherd JD; Tropea D; Wang KH; Bear MF; Sur M
    Nat Neurosci; 2010 Apr; 13(4):450-7. PubMed ID: 20228806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual deprivation induce cross-modal enhancement of olfactory perception.
    Zhou Y; Fang FH; Pan P; Liu ZR; Ji YH
    Biochem Biophys Res Commun; 2017 May; 486(3):833-838. PubMed ID: 28359762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements.
    Pielecka-Fortuna J; Kalogeraki E; Greifzu F; Löwel S
    PLoS One; 2015; 10(9):e0137961. PubMed ID: 26368569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visual map shifts based on whisker-guided cues in the young mouse visual cortex.
    Yoshitake K; Tsukano H; Tohmi M; Komagata S; Hishida R; Yagi T; Shibuki K
    Cell Rep; 2013 Dec; 5(5):1365-74. PubMed ID: 24316077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of lateral inhibitory interactions in visual cortex of monocularly deprived cats.
    Kasamatsu T; Kitano M; Sutter EE; Norcia AM
    Vision Res; 1998 Jan; 38(1):1-12. PubMed ID: 9474370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neonatal Restriction of Tactile Inputs Leads to Long-Lasting Impairments of Cross-Modal Processing.
    Sieben K; Bieler M; Röder B; Hanganu-Opatz IL
    PLoS Biol; 2015; 13(11):e1002304. PubMed ID: 26600123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices.
    Petrus E; Rodriguez G; Patterson R; Connor B; Kanold PO; Lee HK
    J Neurosci; 2015 Jun; 35(23):8790-801. PubMed ID: 26063913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vision and visual plasticity in ageing mice.
    Lehmann K; Schmidt KF; Löwel S
    Restor Neurol Neurosci; 2012; 30(2):161-78. PubMed ID: 22348872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-term monocular deprivation alters early components of visual evoked potentials.
    Lunghi C; Berchicci M; Morrone MC; Di Russo F
    J Physiol; 2015 Oct; 593(19):4361-72. PubMed ID: 26119530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex.
    Gainey MA; Wolfe R; Pourzia O; Feldman DE
    PLoS One; 2016; 11(2):e0148227. PubMed ID: 26840956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex.
    Foeller E; Celikel T; Feldman DE
    J Neurophysiol; 2005 Dec; 94(6):4387-400. PubMed ID: 16162832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Layer-Specific Refinement of Sensory Coding in Developing Mouse Barrel Cortex.
    van der Bourg A; Yang JW; Reyes-Puerta V; Laurenczy B; Wieckhorst M; Stüttgen MC; Luhmann HJ; Helmchen F
    Cereb Cortex; 2017 Oct; 27(10):4835-4850. PubMed ID: 27620976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monocular deprivation in kittens differently affects crossed and uncrossed visual pathways.
    Bisti S; Carmignoto G
    Vision Res; 1986; 26(6):875-84. PubMed ID: 3750870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whisker experience-dependent mGluR signaling maintains synaptic strength in the mouse adolescent cortex.
    Kubota J; Mikami Y; Kanemaru K; Sekiya H; Okubo Y; Iino M
    Eur J Neurosci; 2016 Aug; 44(3):2004-14. PubMed ID: 27225340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nogo Receptor 1 Limits Ocular Dominance Plasticity but not Turnover of Axonal Boutons in a Model of Amblyopia.
    Frantz MG; Kast RJ; Dorton HM; Chapman KS; McGee AW
    Cereb Cortex; 2016 May; 26(5):1975-85. PubMed ID: 25662716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex.
    Landers MS; Sullivan RM
    J Neurosci; 1999 Jun; 19(12):5131-7. PubMed ID: 10366646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.