BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29247474)

  • 1. Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicin A from Chitin.
    Sadiq AD; Chen X; Yan N; Sperry J
    ChemSusChem; 2018 Feb; 11(3):532-535. PubMed ID: 29247474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green and Facile Production of Chitin from Crustacean Shells Using a Natural Deep Eutectic Solvent.
    Huang WC; Zhao D; Guo N; Xue C; Mao X
    J Agric Food Chem; 2018 Nov; 66(45):11897-11901. PubMed ID: 30359004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the Boundary of Biorefinery: Organonitrogen Chemicals from Biomass.
    Chen X; Song S; Li H; Gözaydın G; Yan N
    Acc Chem Res; 2021 Apr; 54(7):1711-1722. PubMed ID: 33576600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Analysis of Conventional and Deep Eutectic Solvent (DES)-Mediated Strategies for the Extraction of Chitin from Marine Crustacean Shells.
    Morgan K; Conway C; Faherty S; Quigley C
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent trends in biological extraction of chitin from marine shell wastes: a review.
    Kaur S; Dhillon GS
    Crit Rev Biotechnol; 2015 Mar; 35(1):44-61. PubMed ID: 24083454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile production of chitin from crab shells using ionic liquid and citric acid.
    Setoguchi T; Kato T; Yamamoto K; Kadokawa J
    Int J Biol Macromol; 2012 Apr; 50(3):861-4. PubMed ID: 22108289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shell Biorefinery: Dream or Reality?
    Chen X; Yang H; Yan N
    Chemistry; 2016 Sep; 22(38):13402-21. PubMed ID: 27484462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitin isolation from crustacean waste using a hybrid demineralization/DBD plasma process.
    Borić M; Vicente FA; Jurković DL; Novak U; Likozar B
    Carbohydr Polym; 2020 Oct; 246():116648. PubMed ID: 32747280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of the different types of acid solution on the extraction and adsorption performance of chitin from shrimp shell waste.
    Rahayu AP; Islami AF; Saputra E; Sulmartiwi L; Rahmah AU; Kurnia KA
    Int J Biol Macromol; 2022 Jan; 194():843-850. PubMed ID: 34838575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids.
    Tolesa LD; Gupta BS; Lee MJ
    Int J Biol Macromol; 2019 Jun; 130():818-826. PubMed ID: 30840869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for fast chitin extraction from shells of crab, crayfish and shrimp.
    Kaya M; Baran T; Karaarslan M
    Nat Prod Res; 2015; 29(15):1477-80. PubMed ID: 25835041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Shell Biorefinery: Advances in Chemical-Catalytic Conversion of Chitin Biomass to Organonitrogen Chemicals.
    Dai J; Li F; Fu X
    ChemSusChem; 2020 Dec; 13(24):6498-6508. PubMed ID: 32897633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the purity of chitin from crustacean sources using deep eutectic solvents: A machine learning approach.
    Rajendran S; Muthusamy M
    J Appl Biomater Funct Mater; 2024; 22():22808000241248887. PubMed ID: 38742818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and evaluation of a netropsin-proximicin-hybrid library for DNA binding and cytotoxicity.
    Wolter FE; Molinari L; Socher ER; Schneider K; Nicholson G; Beil W; Seitz O; Süssmuth RD
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3811-5. PubMed ID: 19427785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process.
    Ma X; Gözaydın G; Yang H; Ning W; Han X; Poon NY; Liang H; Yan N; Zhou K
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7719-7728. PubMed ID: 32213582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sustainable biorefinery to convert agricultural residues into value-added chemicals.
    Liu Z; Liao W; Liu Y
    Biotechnol Biofuels; 2016; 9():197. PubMed ID: 27660652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomaterials Derived from Fungal Sources-Is It the New Hype?
    Nawawi WMFBW; Jones M; Murphy RJ; Lee KY; Kontturi E; Bismarck A
    Biomacromolecules; 2020 Jan; 21(1):30-55. PubMed ID: 31592650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quick extraction of chitin from an epizoic crustacean species (Chelonibia patula).
    Kaya M; Karaarslan M; Baran T; Can E; Ekemen G; Bitim B; Duman F
    Nat Prod Res; 2014; 28(23):2186-90. PubMed ID: 24933023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient conversion of N-acetyl-
    Wang J; Zang H; Jiao S; Wang K; Shang Z; Li H; Lou J
    Sci Total Environ; 2020 Mar; 710():136293. PubMed ID: 31926412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Proprieties of Biopolymers (Chitin/Chitosan) and Their Synergic Effects with Endophytic
    Amine R; Tarek C; Hassane E; Noureddine EH; Khadija O
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33672446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.