BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

667 related articles for article (PubMed ID: 29247482)

  • 1. Commonalities in epileptogenic processes from different acute brain insults: Do they translate?
    Klein P; Dingledine R; Aronica E; Bernard C; Blümcke I; Boison D; Brodie MJ; Brooks-Kayal AR; Engel J; Forcelli PA; Hirsch LJ; Kaminski RM; Klitgaard H; Kobow K; Lowenstein DH; Pearl PL; Pitkänen A; Puhakka N; Rogawski MA; Schmidt D; Sillanpää M; Sloviter RS; Steinhäuser C; Vezzani A; Walker MC; Löscher W
    Epilepsia; 2018 Jan; 59(1):37-66. PubMed ID: 29247482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis.
    Becker AJ
    Neuropathol Appl Neurobiol; 2018 Feb; 44(1):112-129. PubMed ID: 29130506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research.
    Löscher W; Brandt C
    Pharmacol Rev; 2010 Dec; 62(4):668-700. PubMed ID: 21079040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy?
    Klein P; Friedman A; Hameed MQ; Kaminski RM; Bar-Klein G; Klitgaard H; Koepp M; Jozwiak S; Prince DA; Rotenberg A; Twyman R; Vezzani A; Wong M; Löscher W
    Epilepsia; 2020 Mar; 61(3):359-386. PubMed ID: 32196665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments.
    Löscher W
    Neuropharmacology; 2020 May; 167():107605. PubMed ID: 30980836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epilepsy after brain insult: targeting epileptogenesis.
    Herman ST
    Neurology; 2002 Nov; 59(9 Suppl 5):S21-6. PubMed ID: 12428028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Searching for the ideal antiepileptogenic agent in experimental models: single treatment versus combinatorial treatment strategies.
    White HS; Löscher W
    Neurotherapeutics; 2014 Apr; 11(2):373-84. PubMed ID: 24425186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epilepsy related to traumatic brain injury.
    Pitkänen A; Immonen R
    Neurotherapeutics; 2014 Apr; 11(2):286-96. PubMed ID: 24554454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options.
    Pitkänen A; Immonen RJ; Gröhn OH; Kharatishvili I
    Epilepsia; 2009 Feb; 50 Suppl 2():21-9. PubMed ID: 19187291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions.
    Golub VM; Reddy DS
    Pharmacol Rev; 2022 Apr; 74(2):387-438. PubMed ID: 35302046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy.
    Pauletti A; Terrone G; Shekh-Ahmad T; Salamone A; Ravizza T; Rizzi M; Pastore A; Pascente R; Liang LP; Villa BR; Balosso S; Abramov AY; van Vliet EA; Del Giudice E; Aronica E; Patel M; Walker MC; Vezzani A
    Brain; 2019 Jul; 142(7):e39. PubMed ID: 31145451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epileptogenesis after traumatic brain injury in Plau-deficient mice.
    Bolkvadze T; Rantala J; Puhakka N; Andrade P; Pitkänen A
    Epilepsy Behav; 2015 Oct; 51():19-27. PubMed ID: 26253597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Questions of epileptogenesis and prevention in symptomatic epilepsies].
    Nikl J
    Ideggyogy Sz; 2004 May; 57(5-6):164-73. PubMed ID: 15264692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining "epileptogenesis" and identifying "antiepileptogenic targets" in animal models of acquired temporal lobe epilepsy is not as simple as it might seem.
    Sloviter RS; Bumanglag AV
    Neuropharmacology; 2013 Jun; 69():3-15. PubMed ID: 22342985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy.
    Pauletti A; Terrone G; Shekh-Ahmad T; Salamone A; Ravizza T; Rizzi M; Pastore A; Pascente R; Liang LP; Villa BR; Balosso S; Abramov AY; van Vliet EA; Del Giudice E; Aronica E; Antoine DJ; Patel M; Walker MC; Vezzani A
    Brain; 2017 Jul; 140(7):1885-1899. PubMed ID: 28575153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-epileptogenesis in rodent post-traumatic epilepsy models.
    Pitkänen A; Bolkvadze T; Immonen R
    Neurosci Lett; 2011 Jun; 497(3):163-71. PubMed ID: 21402123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive deficits and brain myo-Inositol are early biomarkers of epileptogenesis in a rat model of epilepsy.
    Pascente R; Frigerio F; Rizzi M; Porcu L; Boido M; Davids J; Zaben M; Tolomeo D; Filibian M; Gray WP; Vezzani A; Ravizza T
    Neurobiol Dis; 2016 Sep; 93():146-55. PubMed ID: 27173096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies.
    Wong M
    Epilepsia; 2010 Jan; 51(1):27-36. PubMed ID: 19817806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common Pathways of Epileptogenesis in Patients With Epilepsy Post-Brain Injury: Findings From a Systematic Review and Meta-analysis.
    Misra S; Khan EI; Lam TT; Mazumder R; Gururangan K; Hickman LB; Goswami V; Funaro MC; Eldem E; Sansing LH; Sico JJ; Quinn TJ; Liebeskind DS; Montaner J; Kwan P; Mishra NK
    Neurology; 2023 Nov; 101(22):e2243-e2256. PubMed ID: 37550071
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 34.