These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29247562)

  • 1. A history of genome editing in Saccharomyces cerevisiae.
    Alexander WG
    Yeast; 2018 May; 35(5):355-360. PubMed ID: 29247562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. History of genome editing in yeast.
    Fraczek MG; Naseeb S; Delneri D
    Yeast; 2018 May; 35(5):361-368. PubMed ID: 29345746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cpf1 facilitated large fragment deletion in Saccharomyces cerevisiae.
    Li ZH; Liu M; Lyu XM; Wang FQ; Wei DZ
    J Basic Microbiol; 2018 Dec; 58(12):1100-1104. PubMed ID: 30198089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise genome-wide base editing by the CRISPR Nickase system in yeast.
    Satomura A; Nishioka R; Mori H; Sato K; Kuroda K; Ueda M
    Sci Rep; 2017 May; 7(1):2095. PubMed ID: 28522803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.
    Ryan OW; Poddar S; Cate JH
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
    Bao Z; HamediRad M; Xue P; Xiao H; Tasan I; Chao R; Liang J; Zhao H
    Nat Biotechnol; 2018 Jul; 36(6):505-508. PubMed ID: 29734295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast genetic interaction screens in the age of CRISPR/Cas.
    Adames NR; Gallegos JE; Peccoud J
    Curr Genet; 2019 Apr; 65(2):307-327. PubMed ID: 30255296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CRISPR tool kit for genome editing and beyond.
    Adli M
    Nat Commun; 2018 May; 9(1):1911. PubMed ID: 29765029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.
    Li ZH; Liu M; Wang FQ; Wei DZ
    Biotechnol Lett; 2018 Aug; 40(8):1253-1261. PubMed ID: 29797148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmid-free CRISPR/Cas9 genome editing in Saccharomyces cerevisiae.
    Nishimura A; Tanahashi R; Oi T; Kan K; Takagi H
    Biosci Biotechnol Biochem; 2023 Mar; 87(4):458-462. PubMed ID: 36694939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marker-free genetic manipulations in yeast using CRISPR/CAS9 system.
    Soreanu I; Hendler A; Dahan D; Dovrat D; Aharoni A
    Curr Genet; 2018 Oct; 64(5):1129-1139. PubMed ID: 29626221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Precise Genome Editing Method Reveals Insights into the Activity of Eukaryotic Promoters.
    Elison GL; Song R; Acar M
    Cell Rep; 2017 Jan; 18(1):275-286. PubMed ID: 28052256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in Gene Editing and Metabolic Regulation of
    Liang Y; Gao S; Qi X; Valentovich LN; An Y
    ACS Synth Biol; 2024 Feb; 13(2):428-448. PubMed ID: 38326929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.