These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29247767)

  • 1. Implications of melanin binding in ocular drug delivery.
    Rimpelä AK; Reinisalo M; Hellinen L; Grazhdankin E; Kidron H; Urtti A; Del Amo EM
    Adv Drug Deliv Rev; 2018 Feb; 126():23-43. PubMed ID: 29247767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of cellular retention of melanin bound drugs: Experiments and computational modeling.
    Bahrpeyma S; Reinisalo M; Hellinen L; Auriola S; Del Amo EM; Urtti A
    J Control Release; 2022 Aug; 348():760-770. PubMed ID: 35738465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of an In Vitro-In Vivo Correlation for Melanin Binding and the Extension of the Ocular Half-Life of Small-Molecule Drugs.
    Jakubiak P; Cantrill C; Urtti A; Alvarez-Sánchez R
    Mol Pharm; 2019 Dec; 16(12):4890-4901. PubMed ID: 31670965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.
    Rimpelä AK; Hagström M; Kidron H; Urtti A
    J Control Release; 2018 Aug; 283():261-268. PubMed ID: 29859954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into melanosomes and melanin from some interesting spatial and temporal properties.
    Simon JD; Hong L; Peles DN
    J Phys Chem B; 2008 Oct; 112(42):13201-17. PubMed ID: 18817437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Melanin Characteristics on Drug Binding Properties.
    Jakubiak P; Lack F; Thun J; Urtti A; Alvarez-Sánchez R
    Mol Pharm; 2019 Jun; 16(6):2549-2556. PubMed ID: 30998378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug Distribution to Retinal Pigment Epithelium: Studies on Melanin Binding, Cellular Kinetics, and Single Photon Emission Computed Tomography/Computed Tomography Imaging.
    Rimpelä AK; Schmitt M; Latonen S; Hagström M; Antopolsky M; Manzanares JA; Kidron H; Urtti A
    Mol Pharm; 2016 Sep; 13(9):2977-86. PubMed ID: 26741026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo models to evaluate the role of ocular melanin in trans-scleral drug delivery.
    Pescina S; Santi P; Ferrari G; Padula C; Cavallini P; Govoni P; Nicoli S
    Eur J Pharm Sci; 2012 Aug; 46(5):475-83. PubMed ID: 22484210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanin binding study of clinical drugs with cassette dosing and rapid equilibrium dialysis inserts.
    Pelkonen L; Tengvall-Unadike U; Ruponen M; Kidron H; Del Amo EM; Reinisalo M; Urtti A
    Eur J Pharm Sci; 2017 Nov; 109():162-168. PubMed ID: 28756205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of eye pigmentation on transscleral drug delivery.
    Cheruvu NP; Amrite AC; Kompella UB
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):333-41. PubMed ID: 18172110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of drugs to eye melanin is not predictive of ocular toxicity.
    Leblanc B; Jezequel S; Davies T; Hanton G; Taradach C
    Regul Toxicol Pharmacol; 1998 Oct; 28(2):124-32. PubMed ID: 9927562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal pigment epithelium melanin and ocular toxicity.
    Dayhaw-Barker P
    Int J Toxicol; 2002; 21(6):451-4. PubMed ID: 12537641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Melanin-Binding Affinity and In Silico Methods to Aid in the Prediction of Drug Exposure in Ocular Tissue.
    Reilly J; Williams SL; Forster CJ; Kansara V; End P; Serrano-Wu MH
    J Pharm Sci; 2015 Dec; 104(12):3997-4001. PubMed ID: 26524700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of Ocular Melanin Drug Binding Assays. Alternatives to the Model of Multiple Classes of Independent Sites.
    Manzanares JA; Rimpelä AK; Urtti A
    Mol Pharm; 2016 Apr; 13(4):1251-7. PubMed ID: 26820602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of quinidine, disopyramide and metoprolol with melanin in vitro in relation to drug-induced ocular toxicity.
    Buszman E; Rózańska R
    Pharmazie; 2003 Jul; 58(7):507-11. PubMed ID: 12889538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of Melanin by Eye Retinal Pigment Epithelium Cells Is Associated with Its Oxidative Destruction in Melanolipofuscin Granules.
    Dontsov AE; Sakina NL; Ostrovsky MA
    Biochemistry (Mosc); 2017 Aug; 82(8):916-924. PubMed ID: 28941459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of chlorpromazine, fluphenazine and trifluoperazine with ocular and synthetic melanin in vitro.
    Buszman E; Beberok A; Rózańska R; Orzechowska A
    Pharmazie; 2008 May; 63(5):372-6. PubMed ID: 18557422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of the melanin binding of p-bromo-methylamphetamine (V-111).
    Báthory G; Szökö E; Magyar K; Deutsch T
    Pol J Pharmacol Pharm; 1990; 42(1):19-27. PubMed ID: 2281018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of drug-melanin interactions to ocular pharmacology and toxicology.
    Salazar-Bookaman MM; Wainer I; Patil PN
    J Ocul Pharmacol; 1994; 10(1):217-39. PubMed ID: 8207328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ocular melanin in ophthalmic physiology and pathology.
    Hu DN; Simon JD; Sarna T
    Photochem Photobiol; 2008; 84(3):639-44. PubMed ID: 18346089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.