BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29247807)

  • 1. Real-time decoding of covert attention in higher-order visual areas.
    Ekanayake J; Hutton C; Ridgway G; Scharnowski F; Weiskopf N; Rees G
    Neuroimage; 2018 Apr; 169():462-472. PubMed ID: 29247807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI.
    Andersson P; Pluim JP; Viergever MA; Ramsey NF
    Brain Topogr; 2013 Jan; 26(1):177-85. PubMed ID: 22965825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time decoding of the direction of covert visuospatial attention.
    Andersson P; Ramsey NF; Raemaekers M; Viergever MA; Pluim JP
    J Neural Eng; 2012 Aug; 9(4):045004. PubMed ID: 22831959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context.
    Halder S; Leinfelder T; Schulz SM; Kübler A
    Hum Brain Mapp; 2019 Jun; 40(8):2399-2412. PubMed ID: 30693612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.
    Marchetti M; Piccione F; Silvoni S; Gamberini L; Priftis K
    Neurorehabil Neural Repair; 2013 Jun; 27(5):430-8. PubMed ID: 23353184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated contextual representation for objects' identities and their locations.
    Gronau N; Neta M; Bar M
    J Cogn Neurosci; 2008 Mar; 20(3):371-88. PubMed ID: 18004950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding visual colour from scalp electroencephalography measurements.
    Hajonides JE; Nobre AC; van Ede F; Stokes MG
    Neuroimage; 2021 Aug; 237():118030. PubMed ID: 33836272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similar spatial patterns of neural coding of category selectivity in FFA and VWFA under different attention conditions.
    Xu G; Jiang Y; Ma L; Yang Z; Weng X
    Neuropsychologia; 2012 Apr; 50(5):862-8. PubMed ID: 22306521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 7T fMRI reveals feasibility of covert visual attention-based brain-computer interfacing with signals obtained solely from cortical grey matter accessible by subdural surface electrodes.
    Andersson P; Ramsey NF; Viergever MA; Pluim JP
    Clin Neurophysiol; 2013 Nov; 124(11):2191-7. PubMed ID: 23773675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variance decomposition for single-subject task-based fMRI activity estimates across many sessions.
    Gonzalez-Castillo J; Chen G; Nichols TE; Bandettini PA
    Neuroimage; 2017 Jul; 154():206-218. PubMed ID: 27773827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Object-based attentional modulation of biological motion processing: spatiotemporal dynamics using functional magnetic resonance imaging and electroencephalography.
    Safford AS; Hussey EA; Parasuraman R; Thompson JC
    J Neurosci; 2010 Jul; 30(27):9064-73. PubMed ID: 20610740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB; Luks TL; Simpson GV; Glaholt M; McIntosh AR
    Neuroimage; 2006 Feb; 29(4):1192-202. PubMed ID: 16236528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation.
    Tonin L; Leeb R; Sobolewski A; Millán Jdel R
    J Neural Eng; 2013 Oct; 10(5):056007. PubMed ID: 23918205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictability of what or where reduces brain activity, but a bottleneck occurs when both are predictable.
    Davis B; Hasson U
    Neuroimage; 2018 Feb; 167():224-236. PubMed ID: 27263508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time fMRI for brain-computer interfacing.
    Sorger B; Goebel R
    Handb Clin Neurol; 2020; 168():289-302. PubMed ID: 32164860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Correlates of Perceptual Grouping Under Conditions of Inattention and Divided Attention.
    Carther-Krone TA; Lawrence-Dewar JM; Shomstein S; Nah JC; Collegio AJ; Marotta JJ
    Perception; 2020 May; 49(5):495-514. PubMed ID: 32389095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shift of activity from attention to motor-related brain areas during visual learning.
    Pollmann S; Maertens M
    Nat Neurosci; 2005 Nov; 8(11):1494-6. PubMed ID: 16205718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention.
    Musso F; Konrad A; Vucurevic G; Schäffner C; Friedrich B; Frech P; Stoeter P; Winterer G
    Neuroimage; 2006 Feb; 29(4):1311-8. PubMed ID: 16406256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proof-of-concept evidence for trimodal simultaneous investigation of human brain function.
    Moore M; Maclin EL; Iordan AD; Katsumi Y; Larsen RJ; Bagshaw AP; Mayhew S; Shafer AT; Sutton BP; Fabiani M; Gratton G; Dolcos F
    Hum Brain Mapp; 2021 Sep; 42(13):4102-4121. PubMed ID: 34160860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-world structure facilitates the rapid emergence of scene category information in visual brain signals.
    Kaiser D; Häberle G; Cichy RM
    J Neurophysiol; 2020 Jul; 124(1):145-151. PubMed ID: 32519577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.