BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29247932)

  • 1. Phytoremediation potential of poplar and willow species in small scale constructed wetland for boron removal.
    Yıldırım K; Kasım GÇ
    Chemosphere; 2018 Mar; 194():722-736. PubMed ID: 29247932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron.
    Zhu H; Bañuelos G
    J Hazard Mater; 2017 Jul; 333():319-328. PubMed ID: 28376360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative performance of
    Salehi A; Shariat A
    Int J Phytoremediation; 2024; 26(9):1369-1378. PubMed ID: 38415612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification.
    Yıldırım K; Uylaş S
    Plant Physiol Biochem; 2016 Dec; 109():146-155. PubMed ID: 27683050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater.
    Ye ZH; Lin ZQ; Whiting SN; de Souza MP; Terry N
    Chemosphere; 2003 Sep; 52(9):1571-9. PubMed ID: 12867190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of boron from wastewater: Evaluation of seven poplar clones for B accumulation and tolerance.
    Chen Z; Taylor AA; Astor SR; Xin J; Terry N
    Chemosphere; 2017 Jan; 167():146-154. PubMed ID: 27716587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments.
    Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M
    J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of micro-pollutants from urban wastewater by constructed wetlands with Phragmites australis and Salix matsudana.
    Francini A; Mariotti L; Di Gregorio S; Sebastiani L; Andreucci A
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36474-36484. PubMed ID: 30374713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow.
    Yu XZ; Gu JD
    Environ Sci Pollut Res Int; 2008 Sep; 15(6):499-508. PubMed ID: 18719961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent.
    Türker OC; Böcük H; Yakar A
    J Hazard Mater; 2013 May; 252-253():132-41. PubMed ID: 23500796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):150-170. PubMed ID: 28133997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.
    Zárubová P; Hejcman M; Vondráčková S; Mrnka L; Száková J; Tlustoš P
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18801-13. PubMed ID: 26201656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of chlorpyrifos by Populus and Salix.
    Lee KY; Strand SE; Doty SL
    Int J Phytoremediation; 2012 Jan; 14(1):48-61. PubMed ID: 22567694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoextraction of risk elements by willow and poplar trees.
    Kacálková L; Tlustoš P; Száková J
    Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows.
    Yu XZ; Gu JD; Xing LQ
    Ecotoxicology; 2008 Nov; 17(8):747-55. PubMed ID: 18470609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils.
    Van Slycken S; Witters N; Meiresonne L; Meers E; Ruttens A; Van Peteghem P; Weyens N; Tack FM; Vangronsveld J
    Int J Phytoremediation; 2013; 15(7):677-89. PubMed ID: 23819267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of ferrocyanide in willow and poplar trees in a long term greenhouse experiment.
    Dimitrova T; Repmann F; Raab T; Freese D
    Ecotoxicology; 2015 Apr; 24(3):497-510. PubMed ID: 25477029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana).
    Lebrun M; Miard F; Nandillon R; Léger JC; Hattab-Hambli N; Scippa GS; Bourgerie S; Morabito D
    Chemosphere; 2018 Mar; 194():316-326. PubMed ID: 29220748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A short-term study to evaluate the uptake and accumulation of arsenic in Asian willow (Salix sp.) from arsenic-contaminated water.
    Chen G; Zou X; Zhou Y; Zhang J; Owens G
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3275-84. PubMed ID: 24217972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures.
    Guittonny-Philippe A; Petit ME; Masotti V; Monnier Y; Malleret L; Coulomb B; Combroux I; Baumberger T; Viglione J; Laffont-Schwob I
    J Environ Manage; 2015 Jan; 147():108-23. PubMed ID: 25262393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.