BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2924802)

  • 1. Inhibitors of metalloendoproteases block spiculogenesis in sea urchin primary mesenchyme cells.
    Roe JL; Park HR; Strittmatter WJ; Lennarz WJ
    Exp Cell Res; 1989 Apr; 181(2):542-50. PubMed ID: 2924802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo.
    Ingersoll EP; Wilt FH
    Dev Biol; 1998 Apr; 196(1):95-106. PubMed ID: 9527883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for involvement of metalloendoproteases in a step in sea urchin gamete fusion.
    Roe JL; Farach HA; Strittmatter WJ; Lennarz WJ
    J Cell Biol; 1988 Aug; 107(2):539-44. PubMed ID: 3417761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo.
    Huggins LG; Lennarz WJ
    Dev Growth Differ; 2001 Aug; 43(4):415-24. PubMed ID: 11473548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo.
    Ettensohn CA; Dey D
    Dev Biol; 2017 Jan; 421(2):258-270. PubMed ID: 27866905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells.
    Mundy DI; Strittmatter WJ
    Cell; 1985 Mar; 40(3):645-56. PubMed ID: 2578889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary mesenchyme cells of the sea urchin embryo require an autonomously produced, nonfibrillar collagen for spiculogenesis.
    Wessel GM; Etkin M; Benson S
    Dev Biol; 1991 Nov; 148(1):261-72. PubMed ID: 1936564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that metalloendoproteases are involved in gamete fusion of Ciona intestinalis, ascidia.
    De Santis R; Shirakawa H; Nakada K; Miyazaki S; Hoshi M; Marino R; Pinto MR
    Dev Biol; 1992 Sep; 153(1):165-71. PubMed ID: 1516747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of sea urchin primary mesenchyme cells and spicules during biomineralization in vitro.
    Decker GL; Morrill JB; Lennarz WJ
    Development; 1987 Oct; 101(2):297-312. PubMed ID: 3446478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo.
    Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR
    Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of spicule-forming cells in a 'primitive' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells.
    Wray GA; McClay DR
    Development; 1988 Jun; 103(2):305-15. PubMed ID: 3066611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An acid extract from dissociation medium of sea urchin embryos, induces mesenchyme differentiation.
    Dolo V; Forti C; Dell'Utri S; Ghersi G; Vittorelli ML
    Cell Biol Int Rep; 1992 Jun; 16(6):517-32. PubMed ID: 1394458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the involvement of metalloendoproteases in the acrosome reaction in sea urchin sperm.
    Farach HA; Mundy DI; Strittmatter WJ; Lennarz WJ
    J Biol Chem; 1987 Apr; 262(12):5483-7. PubMed ID: 3553177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin.
    Carson DD; Farach MC; Earles DS; Decker GL; Lennarz WJ
    Cell; 1985 Jun; 41(2):639-48. PubMed ID: 3986913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule.
    Hwang SP; Lennarz WJ
    Exp Cell Res; 1993 Apr; 205(2):383-7. PubMed ID: 8482343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of microinjection: delivering monoclonal antibody 1223 into sea urchin embryos.
    Cho JW
    Mol Cells; 1999 Aug; 9(4):455-8. PubMed ID: 10515613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of post-translational modifications common to three primary mesenchyme cell-specific glycoproteins involved in sea urchin embryonic skeleton formation.
    Kabakoff B; Hwang SP; Lennarz WJ
    Dev Biol; 1992 Apr; 150(2):294-305. PubMed ID: 1551476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific blockers of myoblast fusion inhibit a soluble and not the membrane-associated metalloendoprotease in myoblasts.
    Couch CB; Strittmatter WJ
    J Biol Chem; 1984 May; 259(9):5396-9. PubMed ID: 6371004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of thin filopodia during sea urchin gastrulation.
    Miller J; Fraser SE; McClay D
    Development; 1995 Aug; 121(8):2501-11. PubMed ID: 7671814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.