These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2924802)

  • 1. Inhibitors of metalloendoproteases block spiculogenesis in sea urchin primary mesenchyme cells.
    Roe JL; Park HR; Strittmatter WJ; Lennarz WJ
    Exp Cell Res; 1989 Apr; 181(2):542-50. PubMed ID: 2924802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo.
    Ingersoll EP; Wilt FH
    Dev Biol; 1998 Apr; 196(1):95-106. PubMed ID: 9527883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for involvement of metalloendoproteases in a step in sea urchin gamete fusion.
    Roe JL; Farach HA; Strittmatter WJ; Lennarz WJ
    J Cell Biol; 1988 Aug; 107(2):539-44. PubMed ID: 3417761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo.
    Huggins LG; Lennarz WJ
    Dev Growth Differ; 2001 Aug; 43(4):415-24. PubMed ID: 11473548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo.
    Ettensohn CA; Dey D
    Dev Biol; 2017 Jan; 421(2):258-270. PubMed ID: 27866905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells.
    Mundy DI; Strittmatter WJ
    Cell; 1985 Mar; 40(3):645-56. PubMed ID: 2578889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary mesenchyme cells of the sea urchin embryo require an autonomously produced, nonfibrillar collagen for spiculogenesis.
    Wessel GM; Etkin M; Benson S
    Dev Biol; 1991 Nov; 148(1):261-72. PubMed ID: 1936564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that metalloendoproteases are involved in gamete fusion of Ciona intestinalis, ascidia.
    De Santis R; Shirakawa H; Nakada K; Miyazaki S; Hoshi M; Marino R; Pinto MR
    Dev Biol; 1992 Sep; 153(1):165-71. PubMed ID: 1516747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of sea urchin primary mesenchyme cells and spicules during biomineralization in vitro.
    Decker GL; Morrill JB; Lennarz WJ
    Development; 1987 Oct; 101(2):297-312. PubMed ID: 3446478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo.
    Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR
    Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of spicule-forming cells in a 'primitive' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells.
    Wray GA; McClay DR
    Development; 1988 Jun; 103(2):305-15. PubMed ID: 3066611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An acid extract from dissociation medium of sea urchin embryos, induces mesenchyme differentiation.
    Dolo V; Forti C; Dell'Utri S; Ghersi G; Vittorelli ML
    Cell Biol Int Rep; 1992 Jun; 16(6):517-32. PubMed ID: 1394458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the involvement of metalloendoproteases in the acrosome reaction in sea urchin sperm.
    Farach HA; Mundy DI; Strittmatter WJ; Lennarz WJ
    J Biol Chem; 1987 Apr; 262(12):5483-7. PubMed ID: 3553177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin.
    Carson DD; Farach MC; Earles DS; Decker GL; Lennarz WJ
    Cell; 1985 Jun; 41(2):639-48. PubMed ID: 3986913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule.
    Hwang SP; Lennarz WJ
    Exp Cell Res; 1993 Apr; 205(2):383-7. PubMed ID: 8482343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of microinjection: delivering monoclonal antibody 1223 into sea urchin embryos.
    Cho JW
    Mol Cells; 1999 Aug; 9(4):455-8. PubMed ID: 10515613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of post-translational modifications common to three primary mesenchyme cell-specific glycoproteins involved in sea urchin embryonic skeleton formation.
    Kabakoff B; Hwang SP; Lennarz WJ
    Dev Biol; 1992 Apr; 150(2):294-305. PubMed ID: 1551476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific blockers of myoblast fusion inhibit a soluble and not the membrane-associated metalloendoprotease in myoblasts.
    Couch CB; Strittmatter WJ
    J Biol Chem; 1984 May; 259(9):5396-9. PubMed ID: 6371004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of thin filopodia during sea urchin gastrulation.
    Miller J; Fraser SE; McClay D
    Development; 1995 Aug; 121(8):2501-11. PubMed ID: 7671814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.