BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2924811)

  • 1. Age-related changes in retinal sensitivity, rhodopsin content and rod outer segment length in hooded rats following low-level lead exposure during development.
    Fox DA; Rubinstein SD
    Exp Eye Res; 1989 Feb; 48(2):237-49. PubMed ID: 2924811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low level developmental lead exposure decreases the sensitivity, amplitude and temporal resolution of rods.
    Fox DA; Katz LM; Farber DB
    Neurotoxicology; 1991; 12(4):641-54. PubMed ID: 1665551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats.
    Sugawara T; Sieving PA; Bush RA
    Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional alterations and apoptotic cell death in the retina following developmental or adult lead exposure.
    Fox DA; Campbell ML; Blocker YS
    Neurotoxicology; 1997; 18(3):645-64. PubMed ID: 9339814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation of retinal sensitivity and rhodopsin in developing rat retina.
    Fulton AB; Baker BN
    Invest Ophthalmol Vis Sci; 1984 Jun; 25(6):647-51. PubMed ID: 6724834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of the rod photoresponse from dark-adapted rats.
    Fulton AB; Hansen RM; Findl O
    Invest Ophthalmol Vis Sci; 1995 May; 36(6):1038-45. PubMed ID: 7730013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead-induced alterations in rod-mediated visual functions and cGMP metabolism: new insights.
    Fox DA; Srivastava D; Hurwitz RL
    Neurotoxicology; 1994; 15(3):503-12. PubMed ID: 7854584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rods are selectively altered by lead: I. Electrophysiology and biochemistry.
    Fox DA; Farber DB
    Exp Eye Res; 1988 Apr; 46(4):597-611. PubMed ID: 2898378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin levels and rod-mediated function in Abyssinian cats with hereditary retinal degeneration.
    Jacobson SG; Kemp CM; Narfström K; Nilsson SE
    Exp Eye Res; 1989 Nov; 49(5):843-52. PubMed ID: 2591499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photostasis: regulation of daily photon-catch by rat retinas in response to various cyclic illuminances.
    Penn JS; Williams TP
    Exp Eye Res; 1986 Dec; 43(6):915-28. PubMed ID: 3817032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prenatal ethanol exposure alters scotopic and photopic components of adult rat electroretinograms.
    Katz LM; Fox DA
    Invest Ophthalmol Vis Sci; 1991 Oct; 32(11):2861-72. PubMed ID: 1917390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rods are selectively altered by lead: II. Ultrastructure and quantitative histology.
    Fox DA; Chu LW
    Exp Eye Res; 1988 Apr; 46(4):613-25. PubMed ID: 2838312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology.
    Machida S; Kondo M; Jamison JA; Khan NW; Kononen LT; Sugawara T; Bush RA; Sieving PA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3200-9. PubMed ID: 10967084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation.
    Chaney SY; Mukherjee S; Giddabasappa A; Rueda EM; Hamilton WR; Johnson JE; Fox DA
    Mol Vis; 2016; 22():1468-1489. PubMed ID: 28050121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection by dimethylthiourea against retinal light damage in rats.
    Organisciak DT; Darrow RM; Jiang YI; Marak GE; Blanks JC
    Invest Ophthalmol Vis Sci; 1992 Apr; 33(5):1599-609. PubMed ID: 1559759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rod outer segment (ROS) renewal as a mechanism for adaptation to a new intensity environment. I. Rhodopsin levels and ROS length.
    Schremser JL; Williams TP
    Exp Eye Res; 1995 Jul; 61(1):17-23. PubMed ID: 7556466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive changes in visual cell transduction protein levels: effect of light.
    Organisciak DT; Xie A; Wang HM; Jiang YL; Darrow RM; Donoso LA
    Exp Eye Res; 1991 Dec; 53(6):773-9. PubMed ID: 1783015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats.
    Bicknell IR; Darrow R; Barsalou L; Fliesler SJ; Organisciak DT
    Mol Vis; 2002 Sep; 8():333-40. PubMed ID: 12355060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes in the electroretinogram and concentration or rhodopsin in the Hunter strain of rats during development of hereditary retinal degeneration].
    Govardovskiĭ VI; Ostapenko IA; Shabanova ME; Fuks BB; Etingof RN
    Neirofiziologiia; 1977; 9(5):527-31. PubMed ID: 927599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C57BL/6J-vit/vit mouse model of retinal degeneration: light microscopic analysis and evaluation of rhodopsin levels.
    Smith SB
    Exp Eye Res; 1992 Dec; 55(6):903-10. PubMed ID: 1486944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.