These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2924846)

  • 21. Heterogeneity of chandelier neurons in monkey neocortex: corticotropin-releasing factor- and parvalbumin-immunoreactive populations.
    Lewis DA; Lund JS
    J Comp Neurol; 1990 Mar; 293(4):599-615. PubMed ID: 2329196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Androgen binding and metabolism in the cerebral cortex of the developing rhesus monkey.
    Clark AS; MacLusky NJ; Goldman-Rakic PS
    Endocrinology; 1988 Aug; 123(2):932-40. PubMed ID: 3260856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy.
    Ribak CE; Harris AB; Vaughn JE; Roberts E
    Science; 1979 Jul; 205(4402):211-4. PubMed ID: 109922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex.
    Hendrickson AE; Hunt SP; Wu JY
    Nature; 1981 Aug; 292(5824):605-7. PubMed ID: 6265804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postnatal development of the cholecystokinin innervation of monkey prefrontal cortex.
    Oeth KM; Lewis DA
    J Comp Neurol; 1993 Oct; 336(3):400-18. PubMed ID: 8263229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The emergence of architectonic field structure and areal borders in developing monkey sensorimotor cortex.
    Huntley GW; Jones EG
    Neuroscience; 1991; 44(2):287-310. PubMed ID: 1719447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholecystokinin innervation of monkey prefrontal cortex: an immunohistochemical study.
    Oeth KM; Lewis DA
    J Comp Neurol; 1990 Nov; 301(1):123-37. PubMed ID: 1706355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-affinity nerve growth factor receptor (p75NGFR)- and choline acetyltransferase (ChAT)-immunoreactive axons in the cerebral cortex and hippocampus of adult macaque monkeys and humans.
    Mrzljak L; Goldman-Rakic PS
    Cereb Cortex; 1993; 3(2):133-47. PubMed ID: 8490319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastructural localization of immunoreactivity in the developing piriform cortex.
    Westenbroek RE; Westrum LE; Hendrickson AE; Wu JY
    J Comp Neurol; 1988 Aug; 274(3):319-33. PubMed ID: 3065367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization of L-glutamic acid decarboxylase mRNA in monkey and human retina by in situ hybridization.
    Sarthy PV; Fu M
    J Comp Neurol; 1989 Oct; 288(4):691-7. PubMed ID: 2530250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DARPP-32, a phosphoprotein enriched in dopaminoceptive neurons bearing dopamine D1 receptors: distribution in the cerebral cortex of the newborn and adult rhesus monkey.
    Berger B; Febvret A; Greengard P; Goldman-Rakic PS
    J Comp Neurol; 1990 Sep; 299(3):327-48. PubMed ID: 2229482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Study on the radioligand binding assay of cholecystokinin receptor in rat cerebral cortex].
    Xiang P; Chen M; Tan T; Shi Y
    Hua Xi Yi Ke Da Xue Xue Bao; 1999 Jun; 30(2):214-6, 221. PubMed ID: 12212064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time course of the reduction of GABA terminals in a model of focal epilepsy: a glutamic acid decarboxylase immunocytochemical study.
    Houser CR; Harris AB; Vaughn JE
    Brain Res; 1986 Sep; 383(1-2):129-45. PubMed ID: 3094829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunocytochemical localization of cholecystokinin and glutamic acid decarboxylase during normal development in the prepyriform cortex of rats.
    Westenbroek RE; Westrum LE; Hendrickson AE; Wu JY
    Brain Res; 1987 Aug; 431(2):191-206. PubMed ID: 3304540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement and characterization of neuronal cholecystokinin using a novel radioreceptor assay.
    Beresford IJ; Clark CR; Hughes J
    Brain Res; 1986 Nov; 398(2):313-23. PubMed ID: 3801905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in BDNF-immunoreactive structures in the hippocampal formation of the aged macaque monkey.
    Hayashi M; Mistunaga F; Ohira K; Shimizu K
    Brain Res; 2001 Nov; 918(1-2):191-6. PubMed ID: 11684059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholecystokinin-immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels.
    Hendry SH; Jones EG; Beinfeld MC
    Proc Natl Acad Sci U S A; 1983 Apr; 80(8):2400-4. PubMed ID: 6132387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of somatostatin-immunoreactive cell bodies and fibers in the neocortex of Macaca fuscata.
    Iritani S; Satoh K
    Synapse; 1991 Sep; 9(1):50-9. PubMed ID: 1686672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cholecystokinin turnover in brain.
    Meek JL; Iadarola MJ; Giorgi O
    Brain Res; 1983 Oct; 276(2):375-8. PubMed ID: 6313133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutamic acid decarboxylase activity decreases in mouse neocortex after lesions of the basal forebrain.
    Höhmann CF; Bear MF; Ebner FF
    Brain Res; 1985 Apr; 333(1):165-8. PubMed ID: 2986770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.