BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 29248552)

  • 1. Fully biodegradable Poly(lactic acid)/Starch blends: A review of toughening strategies.
    Koh JJ; Zhang X; He C
    Int J Biol Macromol; 2018 Apr; 109():99-113. PubMed ID: 29248552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly (lactic acid) blends: Processing, properties and applications.
    Nofar M; Sacligil D; Carreau PJ; Kamal MR; Heuzey MC
    Int J Biol Macromol; 2019 Mar; 125():307-360. PubMed ID: 30528997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer.
    Li Y; Shimizu H
    Macromol Biosci; 2007 Jul; 7(7):921-8. PubMed ID: 17578835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends.
    Akrami M; Ghasemi I; Azizi H; Karrabi M; Seyedabadi M
    Carbohydr Polym; 2016 Jun; 144():254-62. PubMed ID: 27083816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Toughness Poly(Lactic Acid)/Starch Blends Prepared through Reactive Blending Plasticization and Compatibilization.
    Hu H; Xu A; Zhang D; Zhou W; Peng S; Zhao X
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33339088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres.
    Chotiprayon P; Chaisawad B; Yoksan R
    Int J Biol Macromol; 2020 Aug; 156():960-968. PubMed ID: 32330500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends.
    Zhao H; Zhao G
    J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of thermoplasticized starch on physical-chemical properties of new biodegradable carriers intended for forest industry.
    Castillo C; Nesic A; Urra N; Maldonado A
    Int J Biol Macromol; 2019 Feb; 122():924-929. PubMed ID: 30412758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends.
    Jiang L; Wolcott MP; Zhang J
    Biomacromolecules; 2006 Jan; 7(1):199-207. PubMed ID: 16398516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends.
    Ferri JM; Garcia-Garcia D; Sánchez-Nacher L; Fenollar O; Balart R
    Carbohydr Polym; 2016 Aug; 147():60-68. PubMed ID: 27178909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: tung oil anhydride.
    Xiong Z; Li C; Ma S; Feng J; Yang Y; Zhang R; Zhu J
    Carbohydr Polym; 2013 Jun; 95(1):77-84. PubMed ID: 23618242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters.
    Shirai MA; Grossmann MV; Mali S; Yamashita F; Garcia PS; Müller CM
    Carbohydr Polym; 2013 Jan; 92(1):19-22. PubMed ID: 23218260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites.
    Kumar M; Mohanty S; Nayak SK; Rahail Parvaiz M
    Bioresour Technol; 2010 Nov; 101(21):8406-15. PubMed ID: 20573502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ductile and biodegradable poly (lactic acid) matrix film with layered structure.
    Cao Z; Pan H; Chen Y; Han L; Bian J; Zhang H; Dong L; Yang Y
    Int J Biol Macromol; 2019 Sep; 137():1141-1152. PubMed ID: 31295492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of thermoplastic starches and their blends with poly(lactic acid).
    Yang Y; Tang Z; Xiong Z; Zhu J
    Int J Biol Macromol; 2015; 77():273-9. PubMed ID: 25840151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization.
    Ojijo V; Ray SS; Sadiku R
    ACS Appl Mater Interfaces; 2013 May; 5(10):4266-76. PubMed ID: 23627363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review.
    Coudane J; Van Den Berghe H; Mouton J; Garric X; Nottelet B
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(lactic acid) blends in biomedical applications.
    Saini P; Arora M; Kumar MNVR
    Adv Drug Deliv Rev; 2016 Dec; 107():47-59. PubMed ID: 27374458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toughening and thermal characteristics of plasticized polylactide and poly(butylene adipate-co-terephthalate) blend films: Influence of compatibilization.
    Phetwarotai W; Zawong M; Phusunti N; Aht-Ong D
    Int J Biol Macromol; 2021 Jul; 183():346-357. PubMed ID: 33932412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligo(lactic acid)-grafted starch: A compatibilizer for poly(lactic acid)/thermoplastic starch blend.
    Noivoil N; Yoksan R
    Int J Biol Macromol; 2020 Oct; 160():506-517. PubMed ID: 32464210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.