These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29248697)

  • 1. 3D spatially-adaptive canonical correlation analysis: Local and global methods.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Curran T; Byrd R; Nandy R; Cordes D
    Neuroimage; 2018 Apr; 169():240-255. PubMed ID: 29248697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A family of locally constrained CCA models for detecting activation patterns in fMRI.
    Zhuang X; Yang Z; Curran T; Byrd R; Nandy R; Cordes D
    Neuroimage; 2017 Apr; 149():63-84. PubMed ID: 28041980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate group-level analysis for task fMRI data with canonical correlation analysis.
    Zhuang X; Yang Z; Sreenivasan KR; Mishra VR; Curran T; Nandy R; Cordes D
    Neuroimage; 2019 Jul; 194():25-41. PubMed ID: 30894332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the performance of local canonical correlation analysis in fMRI using spatial constraints.
    Cordes D; Jin M; Curran T; Nandy R
    Hum Brain Mapp; 2012 Nov; 33(11):2611-26. PubMed ID: 23074078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On rotational invariance in adaptive spatial filtering of fMRI data.
    Rydell J; Knutsson H; Borga M
    Neuroimage; 2006 Mar; 30(1):144-50. PubMed ID: 16257235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data.
    Blazejewska AI; Fischl B; Wald LL; Polimeni JR
    Neuroimage; 2019 Apr; 189():601-614. PubMed ID: 30690157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Projection CCA Method for Effective fMRI Data Analysis.
    Qadar MA; Seghouane AK
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3247-3256. PubMed ID: 30843795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion-informed spatial smoothing of fMRI data in white matter using spectral graph filters.
    Abramian D; Larsson M; Eklund A; Aganj I; Westin CF; Behjat H
    Neuroimage; 2021 Aug; 237():118095. PubMed ID: 34000402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints.
    Liu Z; He B
    Neuroimage; 2008 Feb; 39(3):1198-214. PubMed ID: 18036833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OI and fMRI signal separation using both temporal and spatial autocorrelations.
    Li M; Liu Y; Feng G; Zhou Z; Hu D
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1917-26. PubMed ID: 20483700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The smoothing artifact of spatially constrained canonical correlation analysis in functional MRI.
    Cordes D; Jin M; Curran T; Nandy R
    Int J Biomed Imaging; 2012; 2012():738283. PubMed ID: 23365555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring changes in brain function in IBD patients using SPCCA: a study of simultaneous EEG-fMRI.
    Zhang Y; Wu X; Sun J; Yue K; Lu S; Wang B; Liu W; Shi H; Zou L
    Math Biosci Eng; 2024 Jan; 21(2):2646-2670. PubMed ID: 38454700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?
    Esposito F; Formisano E; Seifritz E; Goebel R; Morrone R; Tedeschi G; Di Salle F
    Hum Brain Mapp; 2002 Jul; 16(3):146-57. PubMed ID: 12112768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial accuracy of fMRI activation influenced by volume- and surface-based spatial smoothing techniques.
    Jo HJ; Lee JM; Kim JH; Shin YW; Kim IY; Kwon JS; Kim SI
    Neuroimage; 2007 Jan; 34(2):550-64. PubMed ID: 17110131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending local canonical correlation analysis to handle general linear contrasts for FMRI data.
    Jin M; Nandy R; Curran T; Cordes D
    Int J Biomed Imaging; 2012; 2012():574971. PubMed ID: 22461786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel nonparametric approach to canonical correlation analysis with applications to low CNR functional MRI data.
    Nandy RR; Cordes D
    Magn Reson Med; 2003 Aug; 50(2):354-65. PubMed ID: 12876712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs.
    Wei Q; Zhu S; Wang Y; Gao X; Guo H; Wu X
    Int J Neural Syst; 2020 May; 30(5):2050020. PubMed ID: 32380925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the spatial specificity of canonical correlation analysis in fMRI.
    Nandy R; Cordes D
    Magn Reson Med; 2004 Oct; 52(4):947-52. PubMed ID: 15389937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition.
    Hu G; Zhang Q; Waters AB; Li H; Zhang C; Wu J; Cong F; Nickerson LD
    J Neurosci Methods; 2019 Sep; 325():108359. PubMed ID: 31306718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain kernel: A new spatial covariance function for fMRI data.
    Wu A; Nastase SA; Baldassano CA; Turk-Browne NB; Norman KA; Engelhardt BE; Pillow JW
    Neuroimage; 2021 Dec; 245():118580. PubMed ID: 34740792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.