BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29248699)

  • 1. Machine learning ensemble modelling to classify caesarean section and vaginal delivery types using Cardiotocography traces.
    Fergus P; Selvaraj M; Chalmers C
    Comput Biol Med; 2018 Feb; 93():7-16. PubMed ID: 29248699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms.
    Fergus P; Hussain A; Al-Jumeily D; Huang DS; Bouguila N
    Biomed Eng Online; 2017 Jul; 16(1):89. PubMed ID: 28679415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computerized analysis of cardiotocograms and ST signals is associated with significant reductions in hypoxic-ischemic encephalopathy and cesarean delivery: an observational study in 38,466 deliveries.
    Lopes-Pereira J; Costa A; Ayres-De-Campos D; Costa-Santos C; Amaral J; Bernardes J
    Am J Obstet Gynecol; 2019 Mar; 220(3):269.e1-269.e8. PubMed ID: 30594567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classifying the type of delivery from cardiotocographic signals: A machine learning approach.
    Ricciardi C; Improta G; Amato F; Cesarelli G; Romano M
    Comput Methods Programs Biomed; 2020 Nov; 196():105712. PubMed ID: 32877811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous cardiotocography during labour: Analysis, classification and management.
    Pinas A; Chandraharan E
    Best Pract Res Clin Obstet Gynaecol; 2016 Jan; 30():33-47. PubMed ID: 26165747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing fetal health prediction: Ensemble modeling with fusion of feature selection and extraction techniques for cardiotocography data.
    Kapila R; Saleti S
    Comput Biol Chem; 2023 Dec; 107():107973. PubMed ID: 37926049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour.
    Alfirevic Z; Devane D; Gyte GM
    Cochrane Database Syst Rev; 2006 Jul; (3):CD006066. PubMed ID: 16856111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiotocography versus intermittent auscultation of fetal heart on admission to labour ward for assessment of fetal wellbeing.
    Devane D; Lalor JG; Daly S; McGuire W; Smith V
    Cochrane Database Syst Rev; 2012 Feb; (2):CD005122. PubMed ID: 22336808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrapartum cardiotocography: an exploratory analysis of interpretational variation.
    Amadori R; Vaianella E; Tosi M; Baronchelli P; Surico D; Remorgida V
    J Obstet Gynaecol; 2022 Oct; 42(7):2753-2757. PubMed ID: 35950331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Foetal scalp blood sampling: impact on the incidence of Caesarean section and assisted vaginal deliveries for non-reassuring foetal heart rate and its use according to gestational age].
    Reif P; Haas J; Schöll W; Lang U
    Z Geburtshilfe Neonatol; 2011 Oct; 215(5):194-8. PubMed ID: 22028059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prognostic model based on image-based time-frequency features and genetic algorithm for fetal hypoxia assessment.
    Cömert Z; Kocamaz AF; Subha V
    Comput Biol Med; 2018 Aug; 99():85-97. PubMed ID: 29894897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrapartum fetal monitoring.
    Cahill AG; Spain J
    Clin Obstet Gynecol; 2015 Jun; 58(2):263-8. PubMed ID: 25811127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of fetal weight at varying gestational age in the absence of ultrasound examination using ensemble learning.
    Lu Y; Fu X; Chen F; Wong KKL
    Artif Intell Med; 2020 Jan; 102():101748. PubMed ID: 31980089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrapartum fetal heart rate monitoring interpretation in labour: a critical appraisal.
    Maso G; Piccoli M; De Seta F; Parolin S; Banco R; Camacho Mattos L; Bogatti P; Alberico S
    Minerva Ginecol; 2015 Feb; 67(1):65-79. PubMed ID: 25411863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography.
    Warrick PA; Hamilton EF; Precup D; Kearney RE
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):771-9. PubMed ID: 20659819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine.
    Krupa N; Ali M; Zahedi E; Ahmed S; Hassan FM
    Biomed Eng Online; 2011 Jan; 10():6. PubMed ID: 21244712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating machine learning techniques and physiology based heart rate features for antepartum fetal monitoring.
    Signorini MG; Pini N; Malovini A; Bellazzi R; Magenes G
    Comput Methods Programs Biomed; 2020 Mar; 185():105015. PubMed ID: 31678794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerised analysis of foetal heart rate variation: prediction of adverse perinatal outcome in patients undergoing prostaglandin induction of labour at term.
    Chang TC; Tan KT; Neow P; Yeo GS
    Ann Acad Med Singap; 1997 Nov; 26(6):772-5. PubMed ID: 9522978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature selection using genetic algorithms for fetal heart rate analysis.
    Xu L; Redman CW; Payne SJ; Georgieva A
    Physiol Meas; 2014 Jul; 35(7):1357-71. PubMed ID: 24854596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Randomized Trial of Intrapartum Fetal ECG ST-Segment Analysis.
    Belfort MA; Saade GR; Thom E; Blackwell SC; Reddy UM; Thorp JM; Tita AT; Miller RS; Peaceman AM; McKenna DS; Chien EK; Rouse DJ; Gibbs RS; El-Sayed YY; Sorokin Y; Caritis SN; VanDorsten JP;
    N Engl J Med; 2015 Aug; 373(7):632-41. PubMed ID: 26267623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.