BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 29248736)

  • 1. Contemporary glycomic approaches using ion mobility-mass spectrometry.
    Morrison KA; Clowers BH
    Curr Opin Chem Biol; 2018 Feb; 42():119-129. PubMed ID: 29248736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.
    Harvey DJ; Watanabe Y; Allen JD; Rudd P; Pagel K; Crispin M; Struwe WB
    J Am Soc Mass Spectrom; 2018 Jun; 29(6):1250-1261. PubMed ID: 29675741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in ion mobility-mass spectrometry for improved structural characterization of glycans and glycoconjugates.
    Chen Z; Glover MS; Li L
    Curr Opin Chem Biol; 2018 Feb; 42():1-8. PubMed ID: 29080446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycan analysis by ion mobility-mass spectrometry and gas-phase spectroscopy.
    Manz C; Pagel K
    Curr Opin Chem Biol; 2018 Feb; 42():16-24. PubMed ID: 29107930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of ion mobility for the separation of glycoconjugate isomers due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level.
    Barroso A; Giménez E; Konijnenberg A; Sancho J; Sanz-Nebot V; Sobott F
    J Proteomics; 2018 Feb; 173():22-31. PubMed ID: 29197583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d
    Wang C; Zhang P; Jin W; Li L; Qiang S; Zhang Y; Huang L; Wang Z
    J Proteomics; 2017 Jan; 150():18-30. PubMed ID: 27585995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem mass spectra of glycan substructures enable the multistage mass spectrometric identification of determinants on oligosaccharides.
    Everest-Dass AV; Kolarich D; Campbell MP; Packer NH
    Rapid Commun Mass Spectrom; 2013 May; 27(9):931-9. PubMed ID: 23592194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Networking of High-Resolution Tandem Ion Mobility Spectra: A Structurally Relevant Way of Organizing Data in Glycomics?
    Ollivier S; Fanuel M; Rogniaux H; Ropartz D
    Anal Chem; 2021 Aug; 93(31):10871-10878. PubMed ID: 34324299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a Cyclic Ion Mobility Spectrometer for Tandem Ion Mobility Experiments.
    Ollivier S; Fanuel M; Rogniaux H; Ropartz D
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35129180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridging the structural gap of glycoproteomics with ion mobility spectrometry.
    Mookherjee A; Guttman M
    Curr Opin Chem Biol; 2018 Feb; 42():86-92. PubMed ID: 29202341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Specific Mapping of Sialic Acid Linkage Isomers by Ion Mobility Spectrometry.
    Guttman M; Lee KK
    Anal Chem; 2016 May; 88(10):5212-7. PubMed ID: 27089023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Preservation of Non-covalent Peptide Assemblies in a Tandem-Trapped Ion Mobility Spectrometer-Mass Spectrometer (TIMS-TIMS-MS).
    Kirk SR; Liu FC; Cropley TC; Carlock HR; Bleiholder C
    J Am Soc Mass Spectrom; 2019 Jul; 30(7):1204-1212. PubMed ID: 31025294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS)2.
    Li H; Bendiak B; Siems WF; Gang DR; Hill HH
    Anal Chem; 2013 Mar; 85(5):2760-9. PubMed ID: 23330948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of Ion-Mobility Spectrometry for Deducing Branching of Multiply Charged Glycans and Glycopeptides in a High-Throughput Positive ion LC-FLR-IMS-MS Workflow.
    Pallister EG; Choo MSF; Walsh I; Tai JN; Tay SJ; Yang YS; Ng SK; Rudd PM; Flitsch SL; Nguyen-Khuong T
    Anal Chem; 2020 Dec; 92(23):15323-15335. PubMed ID: 33166117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing liquid chromatography, ion mobility spectrometry, and mass spectrometry to assess INLIGHT™ derivatized N-linked glycans in biological samples.
    Butler KE; Kalmar JG; Muddiman DC; Baker ES
    Anal Bioanal Chem; 2022 Jan; 414(1):623-637. PubMed ID: 34347113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid structural characterization of human milk oligosaccharides and distinction of their isomers using trapped ion mobility spectrometry time-of-flight mass spectrometry.
    Rathahao-Paris E; Delvaux A; Li M; Guillon B; Venot E; Fenaille F; Adel-Patient K; Alves S
    J Mass Spectrom; 2022 Oct; 57(10):e4885. PubMed ID: 36199270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced glycan nanoprofiling by weak anion exchange preparative chromatography, mild acid desialylation, and nanoliquid chromatography-mass spectrometry with nanofluorescence detection.
    Kalay H; Ambrosini M; Chiodo F; van Kooyk Y; García-Vallejo JJ
    Electrophoresis; 2013 Aug; 34(16):2350-6. PubMed ID: 23893432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion Mobility-Mass Spectrometry of Glycoconjugates.
    Struwe WB; Harvey DJ
    Methods Mol Biol; 2020; 2084():203-219. PubMed ID: 31729663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Software ion scan functions in analysis of glycomic and lipidomic MS/MS datasets.
    Haramija M
    J Mass Spectrom; 2018 Mar; 53(3):264-277. PubMed ID: 29285818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online Ozonolysis Combined with Ion Mobility-Mass Spectrometry Provides a New Platform for Lipid Isomer Analyses.
    Poad BLJ; Zheng X; Mitchell TW; Smith RD; Baker ES; Blanksby SJ
    Anal Chem; 2018 Jan; 90(2):1292-1300. PubMed ID: 29220163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.