BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29248771)

  • 21. Dispersive liquid-liquid microextraction for the determination of macrocyclic lactones in milk by liquid chromatography with diode array detection and atmospheric pressure chemical ionization ion-trap tandem mass spectrometry.
    Campillo N; Viñas P; Férez-Melgarejo G; Hernández-Córdoba M
    J Chromatogr A; 2013 Mar; 1282():20-6. PubMed ID: 23415139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-density-solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography with flame ionization detection for the determination of synthetic phenolic antioxidants in milk samples.
    Farajzadeh MA; Afshar Mogaddam MR
    J Sep Sci; 2016 Mar; 39(6):1160-7. PubMed ID: 26763356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of multi-response optimization and quadratic calibration curve for determination of ten pesticides in complex sample matrices using QuEChERS dispersive liquid-liquid microextraction followed by gas chromatography.
    Balsini P; Parastar H
    J Sep Sci; 2019 Dec; 42(23):3553-3562. PubMed ID: 31583831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous determination of six phthalate esters in bottled milks using ultrasound-assisted dispersive liquid-liquid microextraction coupled with gas chromatography.
    Yan H; Cheng X; Liu B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Sep; 879(25):2507-12. PubMed ID: 21803005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modified QuEChERS in combination with dispersive liquid-liquid microextraction based on solidification of the floating organic droplet method for the determination of organophosphorus pesticides in milk samples.
    Miao XX; Liu DB; Wang YR; Yang YY; Yang XY; Gong HR
    J Chromatogr Sci; 2015; 53(10):1813-20. PubMed ID: 26270080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vortex-assisted micro-solid-phase extraction followed by low-density solvent based dispersive liquid-liquid microextraction for the fast and efficient determination of phthalate esters in river water samples.
    Guo L; Lee HK
    J Chromatogr A; 2013 Jul; 1300():24-30. PubMed ID: 23374370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid Monitoring and Determination of Class 1 Residual Solvents in Pharmaceuticals Using Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry.
    Heydari R; Azizi S
    J Chromatogr Sci; 2015 Jul; 53(6):1020-5. PubMed ID: 25398952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-density solvent-based dispersive liquid-liquid microextraction combined with single-drop microextraction for the fast determination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection.
    Li X; Xue A; Chen H; Li S
    J Chromatogr A; 2013 Mar; 1280():9-15. PubMed ID: 23375770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish.
    Ghasemzadeh-Mohammadi V; Mohammadi A; Hashemi M; Khaksar R; Haratian P
    J Chromatogr A; 2012 May; 1237():30-6. PubMed ID: 22483095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and application of a dispersive liquid-liquid microextraction method for the determination of tetracyclines in beef by liquid chromatography mass spectrometry.
    Mookantsa SO; Dube S; Nindi MM
    Talanta; 2016 Feb; 148():321-8. PubMed ID: 26653456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous derivatization and ultrasound-assisted dispersive liquid-liquid microextraction of chloropropanols in soy milk and other aqueous matrices combined with gas-chromatography-mass spectrometry.
    Carro AM; González P; Lorenzo RA
    J Chromatogr A; 2013 Dec; 1319():35-45. PubMed ID: 24188994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasound-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by gas chromatography for the determination of eight pyrethroid pesticides in tea samples.
    Hou X; Zheng X; Zhang C; Ma X; Ling Q; Zhao L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Oct; 969():123-7. PubMed ID: 25168796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Mohebbi A; Feriduni B
    Anal Chim Acta; 2016 May; 920():1-9. PubMed ID: 27114217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a sequential injection-liquid microextraction procedure with GC-FID for analysis of short-chain fatty acids in palm oil mill effluent.
    Pruksatrakul T; Phoopraintra P; Wilairat P; Chaiyen P; Chantiwas R
    Talanta; 2017 Apr; 165():612-618. PubMed ID: 28153306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of sildenafil, vardenafil and aildenafil in human plasma by dispersive liquid-liquid microextraction-back extraction based on ionic liquid and high performance liquid chromatography-ultraviolet detection.
    Xiao C; Tang M; Li J; Yin CR; Xiang G; Xu L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Jul; 931():111-6. PubMed ID: 23774245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasonic nebulization extraction assisted dispersive liquid-liquid microextraction followed by gas chromatography for the simultaneous determination of six parabens in cosmetic products.
    Wei H; Yang J; Zhang H; Shi Y
    J Sep Sci; 2014 Sep; 37(17):2349-56. PubMed ID: 24945967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.
    Farajzadeh MA; Feriduni B; Mogaddam MR
    Talanta; 2016 Jan; 146():772-9. PubMed ID: 26695329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of synthetic musk fragrances in aqueous matrices by gas chromatography-mass spectrometry.
    Homem V; Alves A; Alves A; Santos L
    Talanta; 2016; 148():84-93. PubMed ID: 26653427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low density solvent based dispersive liquid-liquid microextraction with gas chromatography-electron capture detection for the determination of cypermethrin in tissues and blood of cypermethrin treated rats.
    Mudiam MK; Jain R; Maurya SK; Khan HA; Bandyopadhyay S; Murthy RC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 May; 895-896():65-70. PubMed ID: 22497834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trace determination of antibacterial pharmaceuticals in fishes by microwave-assisted extraction and solid-phase purification combined with dispersive liquid-liquid microextraction followed by ultra-high performance liquid chromatography-tandem mass spectrometry.
    Huang P; Zhao P; Dai X; Hou X; Zhao L; Liang N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb; 1011():136-44. PubMed ID: 26773891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.