These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29249002)

  • 1. Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids.
    Erkenbrack EM
    Dev Genes Evol; 2018 Jan; 228(1):1-11. PubMed ID: 29249002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.
    Mellott DO; Thisdelle J; Burke RD
    Development; 2017 Oct; 144(19):3602-3611. PubMed ID: 28851710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system.
    Bishop CD; MacNeil KE; Patel D; Taylor VJ; Burke RD
    Dev Biol; 2013 May; 377(1):236-44. PubMed ID: 23506838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of hesC and gcm in echinoid larval mesenchyme cell development.
    Yamazaki A; Minokawa T
    Dev Growth Differ; 2016 Apr; 58(3):315-26. PubMed ID: 27046223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins.
    Erkenbrack EM; Petsios E
    J Exp Zool B Mol Dev Evol; 2017 Jul; 328(5):423-432. PubMed ID: 28544452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos.
    Shipp LE; Hill RZ; Moy GW; Gökırmak T; Hamdoun A
    Development; 2015 Oct; 142(20):3537-48. PubMed ID: 26395488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo.
    Hardin J; Armstrong N
    Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo.
    Range RC; Glenn TD; Miranda E; McClay DR
    Development; 2008 Aug; 135(14):2445-54. PubMed ID: 18550713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos.
    Takata H; Kominami T
    Zoolog Sci; 2004 Oct; 21(10):1025-35. PubMed ID: 15514472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Juvenile skeletogenesis in anciently diverged sea urchin clades.
    Gao F; Thompson JR; Petsios E; Erkenbrack E; Moats RA; Bottjer DJ; Davidson EH
    Dev Biol; 2015 Apr; 400(1):148-58. PubMed ID: 25641694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo.
    Bessodes N; Haillot E; Duboc V; Röttinger E; Lahaye F; Lepage T
    PLoS Genet; 2012; 8(12):e1003121. PubMed ID: 23271979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis.
    Zito F; Tesoro V; McClay DR; Nakano E; Matranga V
    Dev Biol; 1998 Apr; 196(2):184-92. PubMed ID: 9576831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos.
    Materna SC; Davidson EH
    Dev Biol; 2012 Apr; 364(1):77-87. PubMed ID: 22306924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment.
    Agca C; Klein WH; Venuti JM
    Mech Dev; 2009; 126(5-6):430-42. PubMed ID: 19368800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.
    Croce JC; McClay DR
    Development; 2010 Jan; 137(1):83-91. PubMed ID: 20023163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo.
    Takacs CM; Amore G; Oliveri P; Poustka AJ; Wang D; Burke RD; Peterson KJ
    Dev Biol; 2004 May; 269(1):152-64. PubMed ID: 15081364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell RNA-seq in the sea urchin embryo show marked cell-type specificity in the Delta/Notch pathway.
    Foster S; Teo YV; Neretti N; Oulhen N; Wessel GM
    Mol Reprod Dev; 2019 Aug; 86(8):931-934. PubMed ID: 31199038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.