BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29249002)

  • 1. Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids.
    Erkenbrack EM
    Dev Genes Evol; 2018 Jan; 228(1):1-11. PubMed ID: 29249002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.
    Mellott DO; Thisdelle J; Burke RD
    Development; 2017 Oct; 144(19):3602-3611. PubMed ID: 28851710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system.
    Bishop CD; MacNeil KE; Patel D; Taylor VJ; Burke RD
    Dev Biol; 2013 May; 377(1):236-44. PubMed ID: 23506838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of hesC and gcm in echinoid larval mesenchyme cell development.
    Yamazaki A; Minokawa T
    Dev Growth Differ; 2016 Apr; 58(3):315-26. PubMed ID: 27046223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins.
    Erkenbrack EM; Petsios E
    J Exp Zool B Mol Dev Evol; 2017 Jul; 328(5):423-432. PubMed ID: 28544452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos.
    Shipp LE; Hill RZ; Moy GW; Gökırmak T; Hamdoun A
    Development; 2015 Oct; 142(20):3537-48. PubMed ID: 26395488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo.
    Hardin J; Armstrong N
    Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo.
    Range RC; Glenn TD; Miranda E; McClay DR
    Development; 2008 Aug; 135(14):2445-54. PubMed ID: 18550713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos.
    Takata H; Kominami T
    Zoolog Sci; 2004 Oct; 21(10):1025-35. PubMed ID: 15514472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Juvenile skeletogenesis in anciently diverged sea urchin clades.
    Gao F; Thompson JR; Petsios E; Erkenbrack E; Moats RA; Bottjer DJ; Davidson EH
    Dev Biol; 2015 Apr; 400(1):148-58. PubMed ID: 25641694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo.
    Bessodes N; Haillot E; Duboc V; Röttinger E; Lahaye F; Lepage T
    PLoS Genet; 2012; 8(12):e1003121. PubMed ID: 23271979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis.
    Zito F; Tesoro V; McClay DR; Nakano E; Matranga V
    Dev Biol; 1998 Apr; 196(2):184-92. PubMed ID: 9576831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos.
    Materna SC; Davidson EH
    Dev Biol; 2012 Apr; 364(1):77-87. PubMed ID: 22306924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment.
    Agca C; Klein WH; Venuti JM
    Mech Dev; 2009; 126(5-6):430-42. PubMed ID: 19368800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.
    Croce JC; McClay DR
    Development; 2010 Jan; 137(1):83-91. PubMed ID: 20023163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo.
    Takacs CM; Amore G; Oliveri P; Poustka AJ; Wang D; Burke RD; Peterson KJ
    Dev Biol; 2004 May; 269(1):152-64. PubMed ID: 15081364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell RNA-seq in the sea urchin embryo show marked cell-type specificity in the Delta/Notch pathway.
    Foster S; Teo YV; Neretti N; Oulhen N; Wessel GM
    Mol Reprod Dev; 2019 Aug; 86(8):931-934. PubMed ID: 31199038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.