These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29249042)

  • 21. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut.
    Fu YH; Piao S; Zhou X; Geng X; Hao F; Vitasse Y; Janssens IA
    Glob Chang Biol; 2019 May; 25(5):1696-1703. PubMed ID: 30779408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.
    Primack RB; Laube J; Gallinat AS; Menzel A
    Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses of rubber leaf phenology to climatic variations in Southwest China.
    Zhai DL; Yu H; Chen SC; Ranjitkar S; Xu J
    Int J Biometeorol; 2019 May; 63(5):607-616. PubMed ID: 29130120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China.
    Du Y; Chen J; Willis CG; Zhou Z; Liu T; Dai W; Zhao Y; Ma K
    Ecol Evol; 2017 Sep; 7(17):6747-6757. PubMed ID: 28904756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reply to communications by Fu et al. international journal of biometeorology.
    Wang H; Rutishauser T; Tao Z; Zhong S; Ge Q; Dai J
    Int J Biometeorol; 2016 Dec; 60(12):2005-2007. PubMed ID: 27882433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of forest tree species' bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement.
    Lange M; Schaber J; Marx A; Jäckel G; Badeck FW; Seppelt R; Doktor D
    Int J Biometeorol; 2016 Nov; 60(11):1711-1726. PubMed ID: 27059366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Larger temperature response of autumn leaf senescence than spring leaf-out phenology.
    Fu YH; Piao S; Delpierre N; Hao F; Hänninen H; Liu Y; Sun W; Janssens IA; Campioli M
    Glob Chang Biol; 2018 May; 24(5):2159-2168. PubMed ID: 29245174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaf phenological characters of main tree species in urban forest of Shenyang.
    Xu S; Xu W; Chen W; He X; Huang Y; Wen H
    PLoS One; 2014; 9(6):e99277. PubMed ID: 24963625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple phenological responses to climate change among 42 plant species in Xi'an, China.
    Dai J; Wang H; Ge Q
    Int J Biometeorol; 2013 Sep; 57(5):749-58. PubMed ID: 23114575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone.
    Chen X; Tian Y; Xu L
    Int J Biometeorol; 2015 Oct; 59(10):1437-52. PubMed ID: 25627826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal coherence of phenological and climatic rhythmicity in Beijing.
    Chen X; Zhang W; Ren S; Lang W; Liang B; Liu G
    Int J Biometeorol; 2017 Oct; 61(10):1733-1748. PubMed ID: 28466416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010.
    Yang Y; Guan H; Shen M; Liang W; Jiang L
    Glob Chang Biol; 2015 Feb; 21(2):652-65. PubMed ID: 25430658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parameterization of temperature sensitivity of spring phenology and its application in explaining diverse phenological responses to temperature change.
    Wang H; Ge Q; Rutishauser T; Dai Y; Dai J
    Sci Rep; 2015 Mar; 5():8833. PubMed ID: 25743934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why don't phenophase dates in the current year affect the same phenophase dates in the following year?
    Jiang M; Chen X; Schwartz MD
    Int J Biometeorol; 2020 Sep; 64(9):1549-1560. PubMed ID: 32415618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Dynamics of autumn phenophase of woody plants in Beijing region in 1962-2007].
    Zhong SY; Zheng JY; Ge QS
    Ying Yong Sheng Tai Xue Bao; 2008 Nov; 19(11):2352-6. PubMed ID: 19238831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps.
    Cornelius C; Estrella N; Franz H; Menzel A
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():57-69. PubMed ID: 22686251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detecting nonlinear response of spring phenology to climate change by Bayesian analysis.
    Pope KS; Dose V; Da Silva D; Brown PH; Leslie CA; Dejong TM
    Glob Chang Biol; 2013 May; 19(5):1518-25. PubMed ID: 23505006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change.
    Zohner CM; Renner SS
    Ecol Lett; 2014 Aug; 17(8):1016-25. PubMed ID: 24943497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.