These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 29249144)
1. BioSITe: A Method for Direct Detection and Quantitation of Site-Specific Biotinylation. Kim DI; Cutler JA; Na CH; Reckel S; Renuse S; Madugundu AK; Tahir R; Goldschmidt HL; Reddy KL; Huganir RL; Wu X; Zachara NE; Hantschel O; Pandey A J Proteome Res; 2018 Feb; 17(2):759-769. PubMed ID: 29249144 [TBL] [Abstract][Full Text] [Related]
2. Signature Fragment Ions of Biotinylated Peptides. Renuse S; Madugundu AK; Jung JH; Byeon SK; Goldschmidt HL; Tahir R; Meyers D; Kim DI; Cutler J; Kim KP; Wu X; Huganir RL; Pandey A J Am Soc Mass Spectrom; 2020 Feb; 31(2):394-404. PubMed ID: 31939678 [TBL] [Abstract][Full Text] [Related]
3. Direct Identification of Biotinylated Proteins from Proximity Labeling (Spot-BioID). Lee SY; Seo JK; Rhee HW Methods Mol Biol; 2019; 2008():97-105. PubMed ID: 31124091 [TBL] [Abstract][Full Text] [Related]
4. Antibodies to biotin enable large-scale detection of biotinylation sites on proteins. Udeshi ND; Pedram K; Svinkina T; Fereshetian S; Myers SA; Aygun O; Krug K; Clauser K; Ryan D; Ast T; Mootha VK; Ting AY; Carr SA Nat Methods; 2017 Dec; 14(12):1167-1170. PubMed ID: 29039416 [TBL] [Abstract][Full Text] [Related]
5. Super-resolution proximity labeling with enhanced direct identification of biotinylation sites. Shin S; Lee SY; Kang MG; Jang DG; Kim J; Rhee HW; Kim JS Commun Biol; 2024 May; 7(1):554. PubMed ID: 38724559 [TBL] [Abstract][Full Text] [Related]
6. Detectability of Biotin Tags by LC-MS/MS. Nierves L; Lange PF J Proteome Res; 2021 May; 20(5):3002-3008. PubMed ID: 33780260 [TBL] [Abstract][Full Text] [Related]
7. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions. Kido K; Yamanaka S; Nakano S; Motani K; Shinohara S; Nozawa A; Kosako H; Ito S; Sawasaki T Elife; 2020 May; 9():. PubMed ID: 32391793 [TBL] [Abstract][Full Text] [Related]
8. Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Gurcel C; Vercoutter-Edouart AS; Fonbonne C; Mortuaire M; Salvador A; Michalski JC; Lemoine J Anal Bioanal Chem; 2008 Apr; 390(8):2089-97. PubMed ID: 18369606 [TBL] [Abstract][Full Text] [Related]
9. Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics. Nishino K; Yoshikawa H; Motani K; Kosako H J Proteome Res; 2022 Sep; 21(9):2094-2103. PubMed ID: 35979633 [TBL] [Abstract][Full Text] [Related]
10. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Kim DI; Birendra KC; Zhu W; Motamedchaboki K; Doye V; Roux KJ Proc Natl Acad Sci U S A; 2014 Jun; 111(24):E2453-61. PubMed ID: 24927568 [TBL] [Abstract][Full Text] [Related]
11. Variability in Streptavidin-Sepharose Matrix Quality Can Significantly Affect Proximity-Dependent Biotinylation (BioID) Data. St-Germain JR; Samavarchi Tehrani P; Wong C; Larsen B; Gingras AC; Raught B J Proteome Res; 2020 Aug; 19(8):3554-3561. PubMed ID: 32628020 [TBL] [Abstract][Full Text] [Related]
12. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. Hahne H; Sobotzki N; Nyberg T; Helm D; Borodkin VS; van Aalten DM; Agnew B; Kuster B J Proteome Res; 2013 Feb; 12(2):927-36. PubMed ID: 23301498 [TBL] [Abstract][Full Text] [Related]
13. An azido-biotin reagent for use in the isolation of protein adducts of lipid-derived electrophiles by streptavidin catch and photorelease. Kim HY; Tallman KA; Liebler DC; Porter NA Mol Cell Proteomics; 2009 Sep; 8(9):2080-9. PubMed ID: 19483245 [TBL] [Abstract][Full Text] [Related]
15. BioID screening of biotinylation sites using the avidin-like protein Tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING). Motani K; Kosako H J Biol Chem; 2020 Aug; 295(32):11174-11183. PubMed ID: 32554809 [TBL] [Abstract][Full Text] [Related]
16. Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID. VarnaitÄ— R; MacNeill SA Proteomics; 2016 Oct; 16(19):2503-2518. PubMed ID: 27329485 [TBL] [Abstract][Full Text] [Related]
17. High-affinity immobilization of proteins using biotin- and GST-based coupling strategies. Hutsell SQ; Kimple RJ; Siderovski DP; Willard FS; Kimple AJ Methods Mol Biol; 2010; 627():75-90. PubMed ID: 20217614 [TBL] [Abstract][Full Text] [Related]
18. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Wells L; Vosseller K; Cole RN; Cronshaw JM; Matunis MJ; Hart GW Mol Cell Proteomics; 2002 Oct; 1(10):791-804. PubMed ID: 12438562 [TBL] [Abstract][Full Text] [Related]
19. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Lim KH; Huang H; Pralle A; Park S Biotechnol Bioeng; 2013 Jan; 110(1):57-67. PubMed ID: 22806584 [TBL] [Abstract][Full Text] [Related]
20. sBioSITe enables sensitive identification of the cell surface proteome through direct enrichment of biotinylated peptides. Garapati K; Ding H; Charlesworth MC; Kim Y; Zenka R; Saraswat M; Mun DG; Chavan S; Shingade A; Lucien F; Zhong J; Kandasamy RK; Pandey A Clin Proteomics; 2023 Dec; 20(1):56. PubMed ID: 38053024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]