BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29249146)

  • 1. Catalytic Performance of a Dicopper-Oxo Complex for Methane Hydroxylation.
    Hori Y; Shiota Y; Tsuji T; Kodera M; Yoshizawa K
    Inorg Chem; 2018 Jan; 57(1):8-11. PubMed ID: 29249146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study.
    Shiota Y; Juhász G; Yoshizawa K
    Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
    Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K
    Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study.
    Yoshizawa K; Shiota Y
    J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane.
    Shiota Y; Yoshizawa K
    Inorg Chem; 2009 Feb; 48(3):838-45. PubMed ID: 19113938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Insights into the Dicopper-Complex-Catalyzed Hydroxylation of Methane and Benzene Using Nitric Oxide: A DFT Study.
    Abe T; Kametani Y; Yoshizawa K; Shiota Y
    Inorg Chem; 2021 Apr; 60(7):4599-4609. PubMed ID: 33755454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations.
    Yu X; Zhong L; Li S
    Phys Chem Chem Phys; 2021 Mar; 23(8):4963-4974. PubMed ID: 33621299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific Enhancement of Catalytic Activity by a Dicopper Core: Selective Hydroxylation of Benzene to Phenol with Hydrogen Peroxide.
    Tsuji T; Zaoputra AA; Hitomi Y; Mieda K; Ogura T; Shiota Y; Yoshizawa K; Sato H; Kodera M
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7779-7782. PubMed ID: 28561921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Study of the Oxidation of Methane to Methanol by the [Cu
    Liu YF; Du L
    Inorg Chem; 2018 Mar; 57(6):3261-3271. PubMed ID: 29504752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ZSM-5 zeolite confinement on reaction intermediates during dioxygen activation by enclosed dicopper cations.
    Yumura T; Takeuchi M; Kobayashi H; Kuroda Y
    Inorg Chem; 2009 Jan; 48(2):508-17. PubMed ID: 19093853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of single and double active sites of Cu oxide clusters over the MFI zeolite for direct conversion of methane to methanol: DFT calculations.
    Nunthakitgoson W; Thivasasith A; Maihom T; Wattanakit C
    Phys Chem Chem Phys; 2021 Jan; 23(3):2500-2510. PubMed ID: 33465219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT Analysis of Methane C-H Activation and Over-Oxidation by [Cu
    Panthi D; Adeyiga O; Odoh SO
    Chemphyschem; 2021 Dec; 22(24):2517-2525. PubMed ID: 34519406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A double arene hydroxylation mediated by dicopper(II)-hydroperoxide species.
    Battaini G; Monzani E; Perotti A; Para C; Casella L; Santagostini L; Gullotti M; Dillinger R; Näther C; Tuczek F
    J Am Chem Soc; 2003 Apr; 125(14):4185-98. PubMed ID: 12670241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites.
    Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA
    J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex.
    Garcia-Bosch I; Ribas X; Costas M
    Chemistry; 2012 Feb; 18(7):2113-22. PubMed ID: 22250002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete mechanism of sigma* intramolecular aromatic hydroxylation through O2 activation by a macrocyclic dicopper(I) complex.
    Poater A; Ribas X; Llobet A; Cavallo L; Solà M
    J Am Chem Soc; 2008 Dec; 130(52):17710-7. PubMed ID: 19055343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase.
    Chen PP; Chan SI
    J Inorg Biochem; 2006 Apr; 100(4):801-9. PubMed ID: 16494948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of aromatic hydroxylation of the [Cu
    Liu YF; Shen J; Chen SL; Qiao W; Zhou S; Hong K
    Dalton Trans; 2019 Dec; 48(45):16882-16893. PubMed ID: 31621734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase.
    Yoshizawa K; Yumura T
    Chemistry; 2003 May; 9(10):2347-58. PubMed ID: 12772310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination.
    Mandal S; Mukherjee J; Lloret F; Mukherjee R
    Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.