These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29249197)

  • 1. Evaluation of the hemocompatibility of RADA 16-I peptide.
    Taghavi L; Aramvash A; Seyedkarimi MS; Malek Sabet N
    J Biomater Appl; 2018 Mar; 32(8):1024-1031. PubMed ID: 29249197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the hemocompatibility and rapid hemostasis of (RADA)4 peptide-based hydrogels.
    Saini A; Serrano K; Koss K; Unsworth LD
    Acta Biomater; 2016 Feb; 31():71-79. PubMed ID: 26654763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI).
    Brockman KS; Kizhakkedathu JN; Santerre JP
    Acta Biomater; 2017 Jan; 48():368-377. PubMed ID: 27818307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7].
    Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Hemostasis Resulting from the Synergism of Self-Assembling Short Peptide and
    Hao R; Peng X; Zhang Y; Chen J; Wang T; Wang W; Zhao Y; Fan X; Chen C; Xu H
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55574-55583. PubMed ID: 33284021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro Hemocompatibility of Arabinogalactan, Betulin, and Betulin Derivatives.
    Drozd NN; Kuznetsova SA; Skurydina ES; Vasilieva NY; Levdansky VA
    Bull Exp Biol Med; 2024 Sep; 177(5):621-625. PubMed ID: 39347869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain biocompatibility and microglia response towards engineered self-assembling (RADA)4 nanoscaffolds.
    Koss KM; Churchward MA; Nguyen AT; Yager JY; Todd KG; Unsworth LD
    Acta Biomater; 2016 Apr; 35():127-37. PubMed ID: 26850147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells.
    Zou Z; Liu T; Li J; Li P; Ding Q; Peng G; Zheng Q; Zeng X; Wu Y; Guo X
    J Biomed Mater Res A; 2014 May; 102(5):1286-93. PubMed ID: 23703883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemocompatibility evaluation in vitro of methoxy polyethyleneglycol-polycaprolactone copolymer solutions.
    Hu Q; Zhang Y; Wang C; Xu J; Wu J; Liu Z; Xue W
    J Biomed Mater Res A; 2016 Mar; 104(3):802-812. PubMed ID: 26481428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of hemocompatibility and hemostasis of a bioflocculant.
    Zhao H; Cao G; Chen H; Li H; Zhou J
    Colloids Surf B Biointerfaces; 2017 Nov; 159():712-719. PubMed ID: 28881298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemostatic wound dressings: Predicting their effects by in vitro tests.
    Wiegand C; Abel M; Hipler UC; Elsner P; Zieger M; Kurz J; Wendel HP; Stoppelkamp S
    J Biomater Appl; 2019 Apr; 33(9):1285-1297. PubMed ID: 30791851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cerium oxide nanoparticles on hemostasis: Coagulation, platelets, and vascular endothelial cells.
    Del Turco S; Ciofani G; Cappello V; Parlanti P; Gemmi M; Caselli C; Ragusa R; Papa A; Battaglia D; Sabatino L; Basta G; Mattoli V
    J Biomed Mater Res A; 2019 Jul; 107(7):1551-1562. PubMed ID: 30882978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations of Anti-Inflammatory Activity of a Peptide-Based Hydrogel Using Rat Air Pouch Model.
    Gavel PK; Parmar HS; Tripathi V; Kumar N; Biswas A; Das AK
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2849-2859. PubMed ID: 30589529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers.
    Cerda-Cristerna BI; Flores H; Pozos-Guillén A; Pérez E; Sevrin C; Grandfils C
    J Control Release; 2011 Aug; 153(3):269-77. PubMed ID: 21550368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemocompatibility of Ca
    Basu A; Hong J; Ferraz N
    Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28941135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the Blood Compatibility of Sulfated Organosolv Lignins Derived from Abies sibirica and Larix sibirica Wood Pulp.
    Drozd NN; Kuznetsova SA; Malyar YN; Vasilyeva NY; Kuznetsov BN
    Bull Exp Biol Med; 2020 Oct; 169(6):815-820. PubMed ID: 33123918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro biological evaluation of high molecular weight hyperbranched polyglycerols.
    Kainthan RK; Hester SR; Levin E; Devine DV; Brooks DE
    Biomaterials; 2007 Nov; 28(31):4581-90. PubMed ID: 17688941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4.
    Seyfert UT; Biehl V; Schenk J
    Biomol Eng; 2002 Aug; 19(2-6):91-6. PubMed ID: 12202168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembling peptide hydrogel scaffolds support stem cell-based hair follicle regeneration.
    Wang X; Wang J; Guo L; Wang X; Chen H; Wang X; Liu J; Tredget EE; Wu Y
    Nanomedicine; 2016 Oct; 12(7):2115-2125. PubMed ID: 27288668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic in vitro hemocompatibility testing of poly(ether imide) membranes functionalized with linear, methylated oligoglycerol and oligo(ethylene glycol).
    Braune S; von Ruesten-Lange M; Mrowietz C; Lützow K; Roch T; Neffe AT; Lendlein A; Jung F
    Clin Hemorheol Microcirc; 2013 Jan; 54(3):235-48. PubMed ID: 23603330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.