BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29249847)

  • 1. Thermodynamic Properties at Saturation Derived from Experimental Two-Phase Isochoric Heat Capacity of 1-Hexyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide.
    Polikhronidi NG; Batyrova RG; Abdulagatov IM; Magee JW; Wu J
    Int J Thermophys; 2016 Nov; 37():. PubMed ID: 29249847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic scaling of relaxation: insights from anharmonic elasticity.
    Bernini S; Puosi F; Leporini D
    J Phys Condens Matter; 2017 Apr; 29(13):135101. PubMed ID: 28102828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molar Heat Capacity (C
    Magee JW
    J Res Natl Inst Stand Technol; 1991; 96(6):725-740. PubMed ID: 28184144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustics as a tool for better characterization of ionic liquids: a comparative study of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide room-temperature ionic liquids.
    Zorębski E; Geppert-Rybczyńska M; Zorębski M
    J Phys Chem B; 2013 Apr; 117(14):3867-76. PubMed ID: 23510074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide solubility in 1-hexyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide in a wide range of temperatures and pressures.
    Safarov J; Hamidova R; Stephan M; Kul I; Shahverdiyev A; Hassel E
    J Phys Chem B; 2014 Jun; 118(24):6829-38. PubMed ID: 24848716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature heat capacity of room-temperature ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.
    Shimizu Y; Ohte Y; Yamamura Y; Saito K; Atake T
    J Phys Chem B; 2006 Jul; 110(28):13970-5. PubMed ID: 16836349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat capacities and glass transitions of ion gels.
    Yamamuro O; Someya T; Kofu M; Ueki T; Ueno K; Watanabe M
    J Phys Chem B; 2012 Sep; 116(35):10935-40. PubMed ID: 22891676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saturation properties of 1-alkyl-3-methylimidazolium based ionic liquids.
    Rane KS; Errington JR
    J Phys Chem B; 2014 Jul; 118(29):8734-43. PubMed ID: 24986360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Equilibrium Investigation on 2-Phenylethanol in Binary and Ternary Systems: Influence of High Pressure on Density and Solid-Liquid Phase Equilibrium.
    Domańska U; Królikowski M; Wlazło M; Więckowski M
    J Phys Chem B; 2018 Jun; 122(23):6188-6197. PubMed ID: 29763313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical properties, structure, and conformations of 1-Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim]NTf2 ionic liquid.
    Blokhin AV; Paulechka YU; Strechan AA; Kabo GJ
    J Phys Chem B; 2008 Apr; 112(14):4357-64. PubMed ID: 18341327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon.
    Vlasiuk M; Frascoli F; Sadus RJ
    J Chem Phys; 2016 Sep; 145(10):104501. PubMed ID: 27634265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic properties of supercritical n-m Lennard-Jones fluids and isochoric and isobaric heat capacity maxima and minima.
    Mairhofer J; Sadus RJ
    J Chem Phys; 2013 Oct; 139(15):154503. PubMed ID: 24160523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of nanostructuration from the heat capacities of the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid series.
    Rocha MA; Coutinho JA; Santos LM
    J Chem Phys; 2013 Sep; 139(10):104502. PubMed ID: 24050354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of the primary relaxation in 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide.
    Russina O; Beiner M; Pappas C; Russina M; Arrighi V; Unruh T; Mullan CL; Hardacre C; Triolo A
    J Phys Chem B; 2009 Jun; 113(25):8469-74. PubMed ID: 19485359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counterintuitive trends of the wetting behavior of ionic liquid-based electrolytes on modified lithium electrodes.
    Schmitz P; Kolek M; Diddens D; Stan MC; Jalkanen K; Winter M; Bieker P
    Phys Chem Chem Phys; 2017 Jul; 19(29):19178-19187. PubMed ID: 28702548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of 2-Phenylethanol (PEA) from Aqueous Solution Using Ionic Liquids: Synthesis, Phase Equilibrium Investigation, Selectivity in Separation, and Thermodynamic Models.
    Domańska U; Okuniewska P; Paduszyński K; Królikowska M; Zawadzki M; Więckowski M
    J Phys Chem B; 2017 Aug; 121(32):7689-7698. PubMed ID: 28723222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.
    Rout A; Kotlarska J; Dehaen W; Binnemans K
    Phys Chem Chem Phys; 2013 Oct; 15(39):16533-41. PubMed ID: 23949284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Temperature Adiabatic Calorimeter for Constant-Volume Heat Capacity Measurements of Compressed Gases and Liquids.
    Magee JW; Deal RJ; Blanco JC
    J Res Natl Inst Stand Technol; 1998; 103(1):63-75. PubMed ID: 28009375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vapor-liquid equilibrium and thermodynamic properties of saturated argon and krypton from Monte Carlo simulations using ab initio potentials.
    Ströker P; Meier K
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38426525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic properties of liquid water from a polarizable intermolecular potential.
    Yigzawe TM; Sadus RJ
    J Chem Phys; 2013 Jan; 138(4):044503. PubMed ID: 23387601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.