These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29249851)

  • 1. Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy.
    Jablonski A; Powell CJ
    J Electron Spectros Relat Phenomena; 2017 Jul; 281():1-2. PubMed ID: 29249851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarks on some reference materials for applications in elastic peak electron spectroscopy.
    Jablonski A; Zemek J
    Anal Sci; 2010; 26(2):239-46. PubMed ID: 20145327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations of Electron Inelastic Mean Free Paths. XI. Data for Liquid Water for Energies from 50 eV to 30 keV.
    Shinotsuka H; Da B; Tanuma S; Yoshikawa H; Powell CJ; Penn DR
    Surf Interface Anal; 2017 Apr; 49(4):238-252. PubMed ID: 28751796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Characterization of MoS
    Krawczyk M; Pisarek M; Szoszkiewicz R; Jablonski A
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of slow (10-40 eV) electrons in soft nanoparticles: Size matters in argon clusters.
    Winkler M; Børve KJ
    Phys Rev E; 2018 Jan; 97(1-1):012604. PubMed ID: 29448394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of surface composition by X-ray photoelectron spectroscopy taking into account elastic photoelectron collisions.
    Jablonski A
    Anal Sci; 2010; 26(2):155-64. PubMed ID: 20145316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron effective attenuation length in epitaxial graphene on SiC.
    Amjadipour M; MacLeod J; Lipton-Duffin J; Tadich A; Boeckl JJ; Iacopi F; Motta N
    Nanotechnology; 2019 Jan; 30(2):025704. PubMed ID: 30382023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Two Methods for Determining Shell Thicknesses of Core-Shell Nanoparticles by X-ray Photoelectron Spectroscopy.
    Powell CJ; Werner WS; Shard AG; Castner DG
    J Phys Chem C Nanomater Interfaces; 2016 Oct; 120(39):22730-22738. PubMed ID: 28138350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].
    Li LZ; Zhuo SJ; Shen RX; Qian R; Gao J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3128-32. PubMed ID: 24555396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectron angular distribution from free SiO
    Antonsson E; Langer B; Halfpap I; Gottwald J; Rühl E
    J Chem Phys; 2017 Jun; 146(24):244301. PubMed ID: 28668021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inelastic mean free path data for Si corrected for surface excitation.
    Orosz GT; Gergely G; Gurbán S; Menyhard M; Jablonski A
    Microsc Microanal; 2005 Dec; 11(6):581-5. PubMed ID: 17481337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the Primary Excitation Spectra in XPS and AES.
    Pauly N; Yubero F; Tougaard S
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface excitations in surface electron spectroscopies studied by reflection electron energy-loss spectroscopy and elastic peak electron spectroscopy.
    Nagatomi T; Tanuma S
    Anal Sci; 2010; 26(2):165-76. PubMed ID: 20145317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface excitations in electron spectroscopy. Part I: dielectric formalism and Monte Carlo algorithm.
    Salvat-Pujol F; Werner WS
    Surf Interface Anal; 2013 May; 45(5):873-894. PubMed ID: 23794766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative Approach for the Determination of Mean Free Paths of Electron Scattering in Liquid Water Based on Experimental Data.
    Schild A; Peper M; Perry C; Rattenbacher D; Wörner HJ
    J Phys Chem Lett; 2020 Feb; 11(3):1128-1134. PubMed ID: 31928019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Verification of Layered Structures in SnO2/Metal-based Gas Sensors by X-ray Microanalysis: Comparison with X-ray Photoelectron Spectroscopy.
    Bemporad E; Carassiti F; Kaciulis S; Mattogno G
    Microsc Microanal; 2001 Nov; 7(6):518-525. PubMed ID: 12597796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions.
    Olivieri G; Parry KM; Powell CJ; Tobias DJ; Brown MA
    J Chem Phys; 2016 Apr; 144(15):154704. PubMed ID: 27389231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron spectroscopy of corrugated solid surfaces.
    Zemek J
    Anal Sci; 2010; 26(2):177-86. PubMed ID: 20145318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface and subsurface oxidation of Mo2C/Mo(100): low-energy ion-scattering, auger electron, angle-resolved X-ray photoelectron, and mass spectroscopy studies.
    Ovári L; Kiss J; Farkas AP; Solymosi F
    J Phys Chem B; 2005 Mar; 109(10):4638-45. PubMed ID: 16851543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic Densities of States from X-Ray Photoelectron Spectroscopy.
    Fadley CS; Shirley DA
    J Res Natl Bur Stand A Phys Chem; 1970; 74A(4):543-558. PubMed ID: 32523208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.