These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29250613)

  • 1. Deformable Image Registration based on Similarity-Steered CNN Regression.
    Cao X; Yang J; Zhang J; Nie D; Kim MJ; Wang Q; Shen D
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():300-308. PubMed ID: 29250613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved image registration by sparse patch-based deformation estimation.
    Kim M; Wu G; Wang Q; Lee SW; Shen D
    Neuroimage; 2015 Jan; 105():257-68. PubMed ID: 25451481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.
    Li S; Jiang H; Pang W
    Comput Biol Med; 2017 May; 84():156-167. PubMed ID: 28365546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A convolutional neural network Cascade for plantar pressure images registration.
    Xia Y; Li Y; Xun L; Yan Q; Zhang D
    Gait Posture; 2019 Feb; 68():403-408. PubMed ID: 30594014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse deformation prediction using Markove Decision Processes (MDP) for Non-rigid registration of MR image.
    Fu T; Li Q; Zhu J; Ai D; Huang Y; Song H; Jiang Y; Wang Y; Yang J
    Comput Methods Programs Biomed; 2018 Aug; 162():47-59. PubMed ID: 29903494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration.
    Jiang Z; Yin FF; Ge Y; Ren L
    Phys Med Biol; 2020 Jan; 65(1):015011. PubMed ID: 31783390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformable Image Registration Using a Cue-Aware Deep Regression Network.
    Cao X; Yang J; Zhang J; Wang Q; Yap PT; Shen D
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1900-1911. PubMed ID: 29993391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining MRF-based deformable registration and deep binary 3D-CNN descriptors for large lung motion estimation in COPD patients.
    Blendowski M; Heinrich MP
    Int J Comput Assist Radiol Surg; 2019 Jan; 14(1):43-52. PubMed ID: 30430361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CNN Regression Approach for Real-Time 2D/3D Registration.
    Shun Miao ; Wang ZJ; Rui Liao
    IEEE Trans Med Imaging; 2016 May; 35(5):1352-1363. PubMed ID: 26829785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.
    Kim J; Kim J; Jang GJ; Lee M
    Neural Netw; 2017 Mar; 87():109-121. PubMed ID: 28110106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative location prediction in CT scan images using convolutional neural networks.
    Guo J; Du H; Zhu J; Yan T; Qiu B
    Comput Methods Programs Biomed; 2018 Jul; 160():43-49. PubMed ID: 29728245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
    Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT
    Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Response to Stereotactic Radiosurgery for Brain Metastases Using Convolutional Neural Networks.
    Cha YJ; Jang WI; Kim MS; Yoo HJ; Paik EK; Jeong HK; Youn SM
    Anticancer Res; 2018 Sep; 38(9):5437-5445. PubMed ID: 30194200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adversarial Similarity Network for Evaluating Image Alignment in Deep Learning based Registration.
    Fan J; Cao X; Xue Z; Yap PT; Shen D
    Med Image Comput Comput Assist Interv; 2018 Sep; 11070():739-746. PubMed ID: 30627709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.
    Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X
    Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and robust segmentation of the striatum using deep convolutional neural networks.
    Choi H; Jin KH
    J Neurosci Methods; 2016 Dec; 274():146-153. PubMed ID: 27777000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.
    Fechter T; Adebahr S; Baltas D; Ben Ayed I; Desrosiers C; Dolz J
    Med Phys; 2017 Dec; 44(12):6341-6352. PubMed ID: 28940372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
    Vivanti R; Joskowicz L; Lev-Cohain N; Ephrat A; Sosna J
    Med Biol Eng Comput; 2018 Sep; 56(9):1699-1713. PubMed ID: 29524116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.