These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29250615)

  • 1. The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges.
    Blase X; Duchemin I; Jacquemin D
    Chem Soc Rev; 2018 Feb; 47(3):1022-1043. PubMed ID: 29250615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the Bethe-Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD.
    Jacquemin D; Duchemin I; Blase X
    J Phys Chem Lett; 2017 Apr; 8(7):1524-1529. PubMed ID: 28301726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Bethe-Salpeter formalism with polarisable continuum embedding: reconciling linear-response and state-specific features.
    Duchemin I; Guido CA; Jacquemin D; Blase X
    Chem Sci; 2018 May; 9(19):4430-4443. PubMed ID: 29896384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Bethe-Salpeter Equation Formalism: From Physics to Chemistry.
    Blase X; Duchemin I; Jacquemin D; Loos PF
    J Phys Chem Lett; 2020 Sep; 11(17):7371-7382. PubMed ID: 32787315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excited state potential energy surfaces of
    Knysh I; Letellier K; Duchemin I; Blase X; Jacquemin D
    Phys Chem Chem Phys; 2023 Mar; 25(12):8376-8385. PubMed ID: 36883347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies.
    Loos PF; Scemama A; Duchemin I; Jacquemin D; Blase X
    J Phys Chem Lett; 2020 May; 11(9):3536-3545. PubMed ID: 32298578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach.
    Boulanger P; Jacquemin D; Duchemin I; Blase X
    J Chem Theory Comput; 2014 Mar; 10(3):1212-8. PubMed ID: 26580191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules.
    Bruneval F; Hamed SM; Neaton JB
    J Chem Phys; 2015 Jun; 142(24):244101. PubMed ID: 26133404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Bethe-Salpeter Excited-State Dipoles: The Challenging Case of Increasingly Long Push-Pull Oligomers.
    Knysh I; Villalobos-Castro JDJ; Duchemin I; Blase X; Jacquemin D
    J Phys Chem Lett; 2023 Apr; 14(15):3727-3734. PubMed ID: 37042642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of excited state potential energy surfaces with the Bethe-Salpeter equation formalism: The 4-(dimethylamino)benzonitrile twist.
    Knysh I; Duchemin I; Blase X; Jacquemin D
    J Chem Phys; 2022 Nov; 157(19):194102. PubMed ID: 36414466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining the Bethe-Salpeter Formalism with Time-Dependent DFT Excited-State Forces to Describe Optical Signatures: NBO Fluoroborates as Working Examples.
    Boulanger P; Chibani S; Le Guennic B; Duchemin I; Blase X; Jacquemin D
    J Chem Theory Comput; 2014 Oct; 10(10):4548-56. PubMed ID: 26588148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-Conserved and Spin-Flip Optical Excitations from the Bethe-Salpeter Equation Formalism.
    Monino E; Loos PF
    J Chem Theory Comput; 2021 May; 17(5):2852-2867. PubMed ID: 33724811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the Photochrome-TiO
    Escudero D; Duchemin I; Blase X; Jacquemin D
    J Phys Chem Lett; 2017 Mar; 8(5):936-940. PubMed ID: 28178780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations.
    Webster R; Bernasconi L; Harrison NM
    J Chem Phys; 2015 Jun; 142(21):214705. PubMed ID: 26049514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms.
    Faber C; Boulanger P; Attaccalite C; Duchemin I; Blase X
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130271. PubMed ID: 24516185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular Singlet and Triplet Exciton Transfer Integrals from Many-Body Green's Functions Theory.
    Wehner J; Baumeier B
    J Chem Theory Comput; 2017 Apr; 13(4):1584-1594. PubMed ID: 28234472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies.
    Li J; Jin Y; Su NQ; Yang W
    J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Getting excited: challenges in quantum-classical studies of excitons in polymeric systems.
    Bagheri B; Baumeier B; Karttunen M
    Phys Chem Chem Phys; 2016 Nov; 18(44):30297-30304. PubMed ID: 27453482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation.
    Rangel T; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2017 May; 146(19):194108. PubMed ID: 28527441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Renormalized Singles
    Li J; Golze D; Yang W
    J Chem Theory Comput; 2022 Nov; 18(11):6637-6645. PubMed ID: 36279250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.