These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 29250838)

  • 41. Ultra-Large Stress and Strain Polymer Nanocomposite Actuators Incorporating a Mutually-Interpenetrated, Collective-Deformation Carbon Nanotube Network.
    Chen K; Li M; Yang Z; Ye Z; Zhang D; Zhao B; Xia Z; Wang Q; Kong X; Shang Y; Liu C; Yu H; Cao A
    Adv Mater; 2024 Jun; 36(23):e2313354. PubMed ID: 38589015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ionic liquids for soft functional materials with carbon nanotubes.
    Fukushima T; Aida T
    Chemistry; 2007; 13(18):5048-58. PubMed ID: 17516613
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bio-hybrid muscle cell-based actuators.
    Ricotti L; Menciassi A
    Biomed Microdevices; 2012 Dec; 14(6):987-98. PubMed ID: 22960907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of Hexagonal Boron Nitride Insulating Layers on the Driving Performance of Ionic Electroactive Polymer Actuators for Light-Weight Artificial Muscles.
    Park M; Chun Y; Kim S; Sohn KY; Jeon M
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles.
    Simaite A; Delagarde A; Tondu B; Souères P; Flahaut E; Bergaud C
    Nanotechnology; 2017 Jan; 28(2):025502. PubMed ID: 27905315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An all-organic composite actuator material with a high dielectric constant.
    Zhang QM; Li H; Poh M; Xia F; Cheng ZY; Xu H; Huang C
    Nature; 2002 Sep; 419(6904):284-7. PubMed ID: 12239563
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-Voltage Driven Ionic Polymer-Metal Composite Actuators: Structures, Materials, and Applications.
    Zhang H; Lin Z; Hu Y; Ma S; Liang Y; Ren L; Ren L
    Adv Sci (Weinh); 2023 Apr; 10(10):e2206135. PubMed ID: 36683153
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shape Memory Alloy (SMA)-Based Microscale Actuators with 60% Deformation Rate and 1.6 kHz Actuation Speed.
    Lee HT; Kim MS; Lee GY; Kim CS; Ahn SH
    Small; 2018 Jun; 14(23):e1801023. PubMed ID: 29717811
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From Nature to Technology: Exploring Bioinspired Polymer Actuators via Electrospinning.
    Razzaq MY; Balk M; Mazurek-Budzyńska M; Schadewald A
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836078
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrical activation of artificial muscles containing polyacrylonitrile gel fibers.
    Schreyer HB; Gebhart N; Kim KJ; Shahinpoor M
    Biomacromolecules; 2000; 1(4):642-7. PubMed ID: 11710194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems.
    Jang Y; Kim SM; Spinks GM; Kim SJ
    Adv Mater; 2020 Feb; 32(5):e1902670. PubMed ID: 31403227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers.
    Terasawa N; Asaka K
    Langmuir; 2014 Dec; 30(47):14343-51. PubMed ID: 25354668
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer-Metal Composites with Nanodispersed Metal Electrodes.
    Wang HS; Cho J; Song DS; Jang JH; Jho JY; Park JH
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21998-22005. PubMed ID: 28593763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?
    Carpi F; Kornbluh R; Sommer-Larsen P; Alici G
    Bioinspir Biomim; 2011 Dec; 6(4):045006. PubMed ID: 22126909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development and challenges of smart actuators based on water-responsive materials.
    Zhang Y; Zhang C; Wang R; Tan W; Gu Y; Yu X; Zhu L; Liu L
    Soft Matter; 2022 Aug; 18(31):5725-5741. PubMed ID: 35904079
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical analysis of muscle-like ionic polymer actuators.
    Enikov ET; Seo GS
    Biotechnol Prog; 2006; 22(1):96-105. PubMed ID: 16454498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transparent actuator made by highly-oriented carbon nanotube film for bio-inspired optical systems.
    Weng M; Chen L; Huang F; Liu C; Zhang W
    Nanotechnology; 2020 Jan; 31(6):065501. PubMed ID: 31639782
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.
    Copic D; Hart AJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8218-24. PubMed ID: 25822633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioinspired Actuators Based on Stimuli-Responsive Polymers.
    Cui H; Zhao Q; Wang Y; Du X
    Chem Asian J; 2019 Jul; 14(14):2369-2387. PubMed ID: 30924277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cavatappi artificial muscles from drawing, twisting, and coiling polymer tubes.
    Higueras-Ruiz DR; Shafer MW; Feigenbaum HP
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.