These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82. Sheath-run artificial muscles. Mu J; Jung de Andrade M; Fang S; Wang X; Gao E; Li N; Kim SH; Wang H; Hou C; Zhang Q; Zhu M; Qian D; Lu H; Kongahage D; Talebian S; Foroughi J; Spinks G; Kim H; Ware TH; Sim HJ; Lee DY; Jang Y; Kim SJ; Baughman RH Science; 2019 Jul; 365(6449):150-155. PubMed ID: 31296765 [TBL] [Abstract][Full Text] [Related]
83. Electrothermal polymer nanocomposite actuators. Sellinger AT; Wang DH; Tan LS; Vaia RA Adv Mater; 2010 Aug; 22(31):3430-5. PubMed ID: 20354975 [No Abstract] [Full Text] [Related]
84. High-Performance One-Body Electrochemical Torsional Artificial Muscles Built Using Carbon Nanotubes and Ion-Exchange Polymers. Hyeon JS; Kim S; Song GH; Moon JH; Park JW; Baughman RH; Kim SJ ACS Appl Mater Interfaces; 2023 Dec; 15(51):59939-59945. PubMed ID: 38087433 [TBL] [Abstract][Full Text] [Related]
85. Artificial muscles based on synthetic dielectric elastomers. Pei Q Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6826-9. PubMed ID: 19964914 [TBL] [Abstract][Full Text] [Related]
86. Fabrication and application of polymer composites comprising carbon nanotubes. Mylvaganam K; Zhang LC Recent Pat Nanotechnol; 2007; 1(1):59-65. PubMed ID: 19076021 [TBL] [Abstract][Full Text] [Related]
87. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Stoyanov H; Kollosche M; Risse S; Waché R; Kofod G Adv Mater; 2013 Jan; 25(4):578-83. PubMed ID: 23090668 [TBL] [Abstract][Full Text] [Related]
89. Advances in artificial muscles: A brief literature and patent review. Jing Y; Su F; Yu X; Fang H; Wan Y Front Bioeng Biotechnol; 2023; 11():1083857. PubMed ID: 36741767 [No Abstract] [Full Text] [Related]
93. Millisecond Response of Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable Graphene Framework. Guo F; Zheng X; Liang C; Jiang Y; Xu Z; Jiao Z; Liu Y; Wang HT; Sun H; Ma L; Gao W; Greiner A; Agarwal S; Gao C ACS Nano; 2019 May; 13(5):5549-5558. PubMed ID: 31013425 [TBL] [Abstract][Full Text] [Related]
94. Mimicking muscle fiber structure and function through electromechanical actuation of electrospun silk fiber bundles. Severt SY; Maxwell SL; Bontrager JS; Leger JM; Murphy AR J Mater Chem B; 2017 Oct; 5(40):8105-8114. PubMed ID: 32264649 [TBL] [Abstract][Full Text] [Related]
95. Dual-Ion Co-Regulation System Enabling High-Performance Electrochemical Artificial Yarn Muscles with Energy-Free Catch States. Ren M; Dong L; Wang X; Li Y; Zhao Y; Cui B; Yang G; Li W; Yuan X; Zhou T; Xu P; Wang X; Di J; Li Q Nanomicro Lett; 2023 Jun; 15(1):162. PubMed ID: 37386318 [TBL] [Abstract][Full Text] [Related]
96. Electro and Light-Active Actuators Based on Reversible Shape-Memory Polymer Composites with Segregated Conductive Networks. Xu Z; Ding C; Wei DW; Bao RY; Ke K; Liu Z; Yang MB; Yang W ACS Appl Mater Interfaces; 2019 Aug; 11(33):30332-30340. PubMed ID: 31355626 [TBL] [Abstract][Full Text] [Related]
97. Electroactive polymers for sensing. Wang T; Farajollahi M; Choi YS; Lin IT; Marshall JE; Thompson NM; Kar-Narayan S; Madden JD; Smoukov SK Interface Focus; 2016 Aug; 6(4):20160026. PubMed ID: 27499846 [TBL] [Abstract][Full Text] [Related]
98. Size of liquid metal particles influences actuation properties of a liquid crystal elastomer composite. Ford MJ; Palaniswamy M; Ambulo CP; Ware TH; Majidi C Soft Matter; 2020 Jul; 16(25):5878-5885. PubMed ID: 32412038 [TBL] [Abstract][Full Text] [Related]
99. Concept of an artificial muscle design on polypyrrole nanofiber scaffolds. Harjo M; Järvekülg M; Tamm T; Otero TF; Kiefer R PLoS One; 2020; 15(5):e0232851. PubMed ID: 32392238 [TBL] [Abstract][Full Text] [Related]
100. A review on robotic fish enabled by ionic polymer-metal composite artificial muscles. Chen Z Robotics Biomim; 2017; 4(1):24. PubMed ID: 29264109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]