These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29250934)

  • 21. ASD: a comprehensive database of allosteric proteins and modulators.
    Huang Z; Zhu L; Cao Y; Wu G; Liu X; Chen Y; Wang Q; Shi T; Zhao Y; Wang Y; Li W; Li Y; Chen H; Chen G; Zhang J
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D663-9. PubMed ID: 21051350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and analysis of conserved pockets on protein surfaces.
    Cammisa M; Correra A; Andreotti G; Cubellis MV
    BMC Bioinformatics; 2013; 14 Suppl 7(Suppl 7):S9. PubMed ID: 23815589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycine-induced formation and druggability score prediction of protein surface pockets.
    Bongini P; Niccolai N; Bianchini M
    J Bioinform Comput Biol; 2019 Oct; 17(5):1950026. PubMed ID: 31744363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins.
    Govindaraj RG; Brylinski M
    BMC Bioinformatics; 2018 Mar; 19(1):91. PubMed ID: 29523085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational predictions suggest that structural similarity in viral polymerases may lead to comparable allosteric binding sites.
    Brown JA; Espiritu MV; Abraham J; Thorpe IF
    Virus Res; 2016 Aug; 222():80-93. PubMed ID: 27262620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure.
    Bhagavat R; Sankar S; Srinivasan N; Chandra N
    Structure; 2018 Mar; 26(3):499-512.e2. PubMed ID: 29514079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Druggability Assessment in TRAPP Using Machine Learning Approaches.
    Yuan JH; Han SB; Richter S; Wade RC; Kokh DB
    J Chem Inf Model; 2020 Mar; 60(3):1685-1699. PubMed ID: 32105476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DeeplyTough: Learning Structural Comparison of Protein Binding Sites.
    Simonovsky M; Meyers J
    J Chem Inf Model; 2020 Apr; 60(4):2356-2366. PubMed ID: 32023053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small Molecule Targeting of Protein-Protein Interactions through Allosteric Modulation of Dynamics.
    Cossins BP; Lawson AD
    Molecules; 2015 Sep; 20(9):16435-45. PubMed ID: 26378508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein pockets: inventory, shape, and comparison.
    Coleman RG; Sharp KA
    J Chem Inf Model; 2010 Apr; 50(4):589-603. PubMed ID: 20205445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent computational advances in the identification of allosteric sites in proteins.
    Lu S; Huang W; Zhang J
    Drug Discov Today; 2014 Oct; 19(10):1595-600. PubMed ID: 25107670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-Ligand Scoring with Convolutional Neural Networks.
    Ragoza M; Hochuli J; Idrobo E; Sunseri J; Koes DR
    J Chem Inf Model; 2017 Apr; 57(4):942-957. PubMed ID: 28368587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of RNA binding sites in proteins from amino acid sequence.
    Terribilini M; Lee JH; Yan C; Jernigan RL; Honavar V; Dobbs D
    RNA; 2006 Aug; 12(8):1450-62. PubMed ID: 16790841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening.
    Wan F; Zhu Y; Hu H; Dai A; Cai X; Chen L; Gong H; Xia T; Yang D; Wang MW; Zeng J
    Genomics Proteomics Bioinformatics; 2019 Oct; 17(5):478-495. PubMed ID: 32035227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
    Liang J; Edelsbrunner H; Woodward C
    Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites.
    Kawabata T; Go N
    Proteins; 2007 Aug; 68(2):516-29. PubMed ID: 17444522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of protein functional surfaces by the concept of a split pocket.
    Tseng YY; Li WH
    Proteins; 2009 Sep; 76(4):959-76. PubMed ID: 19326458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-based predictive models for allosteric hot spots.
    Demerdash ON; Daily MD; Mitchell JC
    PLoS Comput Biol; 2009 Oct; 5(10):e1000531. PubMed ID: 19816556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic discovery of molecular probes targeting multiple non-orthosteric and spatially distinct sites in the botulinum neurotoxin subtype A (BoNT/A).
    Dadgar S; Floriano WB
    Mol Cell Probes; 2015 Jun; 29(3):135-43. PubMed ID: 25745992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel Scaffold Identification of mGlu1 Receptor Negative Allosteric Modulators Using a Hierarchical Virtual Screening Approach.
    Jang JW; Cho NC; Min SJ; Cho YS; Park KD; Seo SH; No KT; Pae AN
    Chem Biol Drug Des; 2016 Feb; 87(2):239-56. PubMed ID: 26343933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.