These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29251363)

  • 1. Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding.
    Milić J; Zalibera M; Talaat D; Nomrowski J; Trapp N; Ruhlmann L; Boudon C; Wenger OS; Savitsky A; Lubitz W; Diederich F
    Chemistry; 2018 Jan; 24(6):1431-1440. PubMed ID: 29251363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches.
    Milić J; Zalibera M; Pochorovski I; Trapp N; Nomrowski J; Neshchadin D; Ruhlmann L; Boudon C; Wenger OS; Savitsky A; Lubitz W; Gescheidt G; Diederich F
    J Phys Chem Lett; 2016 Jul; 7(13):2470-7. PubMed ID: 27300355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Quest for Molecular Grippers: Photo-Electric Control of Molecular Gripping Machinery.
    Milić JV; Diederich F
    Chemistry; 2019 Jun; 25(36):8440-8452. PubMed ID: 31111578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Diederich F
    Acc Chem Res; 2014 Jul; 47(7):2096-105. PubMed ID: 24814219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-Responsive Resorcin[4]arene Cavitands: Toward Visible-Light-Activated Molecular Grippers.
    García-López V; Zalibera M; Trapp N; Kuss-Petermann M; Wenger OS; Diederich F
    Chemistry; 2020 Sep; 26(50):11451-11461. PubMed ID: 32780914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of hydrogen-bond acceptors for redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Milić J; Kolarski D; Gropp C; Schweizer WB; Diederich F
    J Am Chem Soc; 2014 Mar; 136(10):3852-8. PubMed ID: 24568570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-switchable resorcin[4]arene cavitands: molecular grippers.
    Pochorovski I; Ebert MO; Gisselbrecht JP; Boudon C; Schweizer WB; Diederich F
    J Am Chem Soc; 2012 Sep; 134(36):14702-5. PubMed ID: 22906195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation.
    Gropp C; Quigley BL; Diederich F
    J Am Chem Soc; 2018 Feb; 140(8):2705-2717. PubMed ID: 29451782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Investigation of Resorcin[4]arene-Based Cavitands as Affinity Materials on Quartz Crystal Microbalances.
    Ryvlin D; Dumele O; Linke A; Fankhauser D; Schweizer WB; Diederich F; Waldvogel SR
    Chempluschem; 2017 Mar; 82(3):493-497. PubMed ID: 31962013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational behavior of pyrazine-bridged and mixed-bridged cavitands: a general model for solvent effects on thermal "vase-kite" switching.
    Roncucci P; Pirondini L; Paderni G; Massera C; Dalcanale E; Azov VA; Diederich F
    Chemistry; 2006 Jun; 12(18):4775-84. PubMed ID: 16671048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halogen bonding molecular capsules.
    Dumele O; Trapp N; Diederich F
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12339-44. PubMed ID: 26013544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: effect of hydrogen bonding on the electronic and geometric structure of the primary quinone. A density functional theory study.
    Sinnecker S; Flores M; Lubitz W
    Phys Chem Chem Phys; 2006 Dec; 8(48):5659-70. PubMed ID: 17149487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanical devices based on quinone-pyrrole and quinone-indole dyads: a computational study.
    Kacprzak S; Kaupp M
    J Phys Chem B; 2006 Apr; 110(15):8158-65. PubMed ID: 16610919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the size and morphology of supramolecular assemblies of viologen-resorcin[4]arene cavitands.
    Kashapov RR; Kharlamov SV; Sultanova ED; Mukhitova RK; Kudryashova YR; Zakharova LY; Ziganshina AY; Konovalov AI
    Chemistry; 2014 Oct; 20(43):14018-25. PubMed ID: 25208760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular Hydrogen Bond Driven Conformational Selectivity of Coumarin Derivatives of Resorcin[4]arene.
    Szafraniec A; Iwanek W
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32859042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hydrogen bonding on metal ion-promoted intramolecular electron transfer and photoinduced electron transfer in a ferrocene-quinone dyad with a rigid amide spacer.
    Fukuzumi S; Okamoto K; Yoshida Y; Imahori H; Araki Y; Ito O
    J Am Chem Soc; 2003 Jan; 125(4):1007-13. PubMed ID: 12537500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigid tetraarylene-bridged cavitands from reduced-symmetry resorcin[4]arene derivatives.
    Smith JN; Lucas NT
    Chem Commun (Camb); 2018 May; 54(37):4716-4719. PubMed ID: 29683182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET studies on a series of BODIPY-dye-labeled switchable resorcin[4]arene cavitands.
    Pochorovski I; Breiten B; Schweizer WB; Diederich F
    Chemistry; 2010 Nov; 16(42):12590-602. PubMed ID: 20865704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrazide as a new hydrogen-bonding motif for resorcin[4]arene-based molecular capsules.
    Park YS; Paek K
    Org Lett; 2008 Nov; 10(21):4867-70. PubMed ID: 18834140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.