These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29251624)

  • 1. Hydrodynamics of electrons in graphene.
    Lucas A; Fong KC
    J Phys Condens Matter; 2018 Feb; 30(5):053001. PubMed ID: 29251624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing Poiseuille flow of hydrodynamic electrons.
    Sulpizio JA; Ella L; Rozen A; Birkbeck J; Perello DJ; Dutta D; Ben-Shalom M; Taniguchi T; Watanabe K; Holder T; Queiroz R; Principi A; Stern A; Scaffidi T; Geim AK; Ilani S
    Nature; 2019 Dec; 576(7785):75-79. PubMed ID: 31802019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling electron-phonon interactions in graphene with curved space hydrodynamics.
    Giordanelli I; Mendoza M; Herrmann HJ
    Sci Rep; 2018 Aug; 8(1):12545. PubMed ID: 30135457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging hydrodynamic electrons flowing without Landauer-Sharvin resistance.
    Kumar C; Birkbeck J; Sulpizio JA; Perello D; Taniguchi T; Watanabe K; Reuven O; Scaffidi T; Stern A; Geim AK; Ilani S
    Nature; 2022 Sep; 609(7926):276-281. PubMed ID: 36071191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent entropy production and hydrodynamics in quantum many-body systems.
    Banks T; Lucas A
    Phys Rev E; 2019 Feb; 99(2-1):022105. PubMed ID: 30934247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bipolar supercurrent in graphene.
    Heersche HB; Jarillo-Herrero P; Oostinga JB; Vandersypen LM; Morpurgo AF
    Nature; 2007 Mar; 446(7131):56-9. PubMed ID: 17330038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher-than-ballistic conduction of viscous electron flows.
    Guo H; Ilseven E; Falkovich G; Levitov LS
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3068-3073. PubMed ID: 28265079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interacting chiral electrons at the 2D Dirac points: a review.
    Hirata M; Kobayashi A; Berthier C; Kanoda K
    Rep Prog Phys; 2021 Mar; 84(3):. PubMed ID: 33059346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New theories of relativistic hydrodynamics in the LHC era.
    Florkowski W; Heller MP; Spaliński M
    Rep Prog Phys; 2018 Apr; 81(4):046001. PubMed ID: 29225204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Non-adiabatic Dynamics in Nanoscale and Condensed Matter Systems.
    Prezhdo OV
    Acc Chem Res; 2021 Dec; 54(23):4239-4249. PubMed ID: 34756013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-based materials in electrochemistry.
    Chen D; Tang L; Li J
    Chem Soc Rev; 2010 Aug; 39(8):3157-80. PubMed ID: 20589275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative local resistance caused by viscous electron backflow in graphene.
    Bandurin DA; Torre I; Krishna Kumar R; Ben Shalom M; Tomadin A; Principi A; Auton GH; Khestanova E; Novoselov KS; Grigorieva IV; Ponomarenko LA; Geim AK; Polini M
    Science; 2016 Mar; 351(6277):1055-8. PubMed ID: 26912363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of vortices in an electron fluid.
    Aharon-Steinberg A; Völkl T; Kaplan A; Pariari AK; Roy I; Holder T; Wolf Y; Meltzer AY; Myasoedov Y; Huber ME; Yan B; Falkovich G; Levitov LS; Hücker M; Zeldov E
    Nature; 2022 Jul; 607(7917):74-80. PubMed ID: 35794267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon hydrodynamics in crystalline materials.
    Ghosh K; Kusiak A; Battaglia JL
    J Phys Condens Matter; 2022 Jun; 34(32):. PubMed ID: 35588717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designer Dirac fermions and topological phases in molecular graphene.
    Gomes KK; Mar W; Ko W; Guinea F; Manoharan HC
    Nature; 2012 Mar; 483(7389):306-10. PubMed ID: 22422264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phononics of Graphene and Related Materials.
    Balandin AA
    ACS Nano; 2020 May; 14(5):5170-5178. PubMed ID: 32338870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size, dimensionality, and strong electron correlation in nanoscience.
    Brus L
    Acc Chem Res; 2014 Oct; 47(10):2951-9. PubMed ID: 25120173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.