BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29251724)

  • 1. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt.
    Jeżowski P; Crosnier O; Deunf E; Poizot P; Béguin F; Brousse T
    Nat Mater; 2018 Feb; 17(2):167-173. PubMed ID: 29251724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
    Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance.
    Fleischmann S; Zeiger M; Quade A; Kruth A; Presser V
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18675-18684. PubMed ID: 29749726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Synthesis of Pre-Doping Lithium-Ion Into Nitrogen-Doped Graphite Negative Electrode for Lithium-Ion Capacitor.
    Lee SY; Kim JI; Rhee KY; Park SJ
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7109-12. PubMed ID: 26716292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable integration of Li5FeO4 towards robust, high-performance lithium-ion hybrid capacitors.
    Park MS; Lim YG; Hwang SM; Kim JH; Kim JS; Dou SX; Cho J; Kim YJ
    ChemSusChem; 2014 Nov; 7(11):3138-44. PubMed ID: 25208971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution.
    Jouhara A; Dupré N; Gaillot AC; Guyomard D; Dolhem F; Poizot P
    Nat Commun; 2018 Oct; 9(1):4401. PubMed ID: 30353001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-sacrificial organic lithium salt enhanced initial Coulombic efficiency for safer and greener lithium-ion batteries.
    Wang D; Zhang Z; Hong B; Lai Y
    Chem Commun (Camb); 2019 Sep; 55(72):10737-10739. PubMed ID: 31432815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized graphene for high performance lithium ion capacitors.
    Lee JH; Shin WH; Ryou MH; Jin JK; Kim J; Choi JW
    ChemSusChem; 2012 Dec; 5(12):2328-33. PubMed ID: 23112143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors.
    Halim M; Liu G; Ardhi REA; Hudaya C; Wijaya O; Lee SH; Kim AY; Lee JK
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20566-20576. PubMed ID: 28557417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes.
    Yamada Y; Usui K; Chiang CH; Kikuchi K; Furukawa K; Yamada A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10892-9. PubMed ID: 24670260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass-Derived Carbon Materials as Prospective Electrodes for High-Energy Lithium- and Sodium-Ion Capacitors.
    Natarajan S; Lee YS; Aravindan V
    Chem Asian J; 2019 Apr; 14(7):936-951. PubMed ID: 30672661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Review of Lithium-Ion Capacitor Technology: Theory, Development, Modeling, Thermal Management Systems, and Applications.
    Karimi D; Behi H; Van Mierlo J; Berecibar M
    Molecules; 2022 May; 27(10):. PubMed ID: 35630595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stable graphite negative electrode for the lithium-sulfur battery.
    Jeschull F; Brandell D; Edström K; Lacey MJ
    Chem Commun (Camb); 2015 Dec; 51(96):17100-3. PubMed ID: 26451894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors.
    Sennu P; Aravindan V; Ganesan M; Lee YG; Lee YS
    ChemSusChem; 2016 Apr; 9(8):849-54. PubMed ID: 26990699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.
    Ahn W; Lee DU; Li G; Feng K; Wang X; Yu A; Lui G; Chen Z
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25297-305. PubMed ID: 27603692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Operando Detection of the Onset and Mapping of Lithium Plating Regimes during Fast Charging of Lithium-Ion Batteries.
    Fear C; Adhikary T; Carter R; Mistry AN; Love CT; Mukherjee PP
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30438-30448. PubMed ID: 32551528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium-Ion Intercalation into Graphite in SO
    Kim A; Jung H; Song J; Kim HJ; Jeong G; Kim H
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9054-9061. PubMed ID: 30735029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi
    Jagadale A; Zhou X; Blaisdell D; Yang S
    Sci Rep; 2018 Jan; 8(1):1602. PubMed ID: 29371664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.