BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 2925206)

  • 21. Efficient electric field-induced generation of hybridomas from human B lymphocytes without prior activation in vitro.
    Kwekkeboom J; de Groot C; Tager JM
    Hum Antibodies Hybridomas; 1992 Jan; 3(1):48-53. PubMed ID: 1576322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An improved electrofusion technique for production of mouse hybridoma cells.
    Vienken J; Zimmermann U
    FEBS Lett; 1985 Mar; 182(2):278-80. PubMed ID: 3979550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct comparison of electric field-mediated and PEG-mediated cell fusion for the generation of antibody producing hybridomas.
    Karsten U; Stolley P; Walther I; Papsdorf G; Weber S; Conrad K; Pasternak L; Kopp J
    Hybridoma; 1988 Dec; 7(6):627-33. PubMed ID: 3235098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunization of SCID-Hu mice and generation of anti-hepatitis B surface antigen-specific hybridomas by electrofusion.
    Neil GA; Sammons DW
    Hum Antibodies Hybridomas; 1992 Oct; 3(4):201-5. PubMed ID: 1477301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Production of anti-enteric adenovirus monoclonal antibody by electrofusion and semi-solid medium culture].
    Zhang Y; Chen L; Wang S; Guo C; Mao P
    Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi; 1997 Mar; 11(1):69-71. PubMed ID: 15619911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antigen-based immunofluorescence analysis of B-cell targeting: advanced technology for the generation of novel monoclonal antibodies with high efficiency and selectivity.
    Tomita M; Fukuda T; Ozu A; Kimura K; Tsong TY; Yoshimura T
    Hybridoma (Larchmt); 2006 Oct; 25(5):283-92. PubMed ID: 17044784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies.
    Yu X; McGraw PA; House FS; Crowe JE
    J Immunol Methods; 2008 Jul; 336(2):142-51. PubMed ID: 18514220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth of hybridoma cells and antibody production in agamma calf serum.
    Torres AR; Healey MC; Johnston AV; McKnight ME
    Hum Antibodies Hybridomas; 1992 Oct; 3(4):206-11. PubMed ID: 1477302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-mitogen containing conditioned medium for hybridoma production and single cell cloning.
    Apiratmateekul N; Pata S; Chiampanichayakul S; Kasinrerk W
    Asian Pac J Allergy Immunol; 2012 Jun; 30(2):114-22. PubMed ID: 22830290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines.
    Kandušer M; Ušaj M
    Expert Opin Drug Deliv; 2014 Dec; 11(12):1885-98. PubMed ID: 25010248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monoclonal anti-cytokeratin antibody from a hybridoma clone generated by electrofusion.
    Karsten U; Papsdorf G; Roloff G; Stolley P; Abel H; Walther I; Weiss H
    Eur J Cancer Clin Oncol; 1985 Jun; 21(6):733-40. PubMed ID: 2410280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High yields of specific hybridomas obtained by electrofusion of murine lymphocytes immunized in vivo or in vitro.
    van Duijn G; Langedijk JP; de Boer M; Tager JM
    Exp Cell Res; 1989 Aug; 183(2):463-72. PubMed ID: 2767160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of specific human mab's by a small scale electrofusion technique: the influence of some physical and chemical factors on hybridoma yield of human peripheral blood lymphocytes XCB-F7 fusions.
    Glaser RW; Jahn S; Grunow R
    Allerg Immunol (Leipz); 1989; 35(2):123-32. PubMed ID: 2788981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation by self re-fusion of bovine³ × murine² heterohybridomas secreting virus-neutralizing bovine monoclonal antibodies to bovine herpesvirus 1 glycoproteins gB, gC, and gD.
    Levings RL; Stoll IR; Warg JV; Patterson PA; Hobbs LA; Kaeberle ML; Roth JA
    Vet Immunol Immunopathol; 2014 May; 159(1-2):58-73. PubMed ID: 24629764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrofusion of single cells in picoliter droplets.
    Schoeman RM; van den Beld WTE; Kemna EWM; Wolbers F; Eijkel JCT; van den Berg A
    Sci Rep; 2018 Feb; 8(1):3714. PubMed ID: 29487332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic approach towards hybridoma generation for cancer immunotherapy.
    Lu YT; Pendharkar GP; Lu CH; Chang CM; Liu CH
    Oncotarget; 2015 Nov; 6(36):38764-76. PubMed ID: 26462149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electro Cell Fusion for Hybridoma Production.
    Greenfield EA
    Cold Spring Harb Protoc; 2019 Oct; 2019(10):. PubMed ID: 31575798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of somatic cell hybridization and human serum on the generation and stability of human hybridomas.
    Lang AB; Bruderer U
    Hybridoma; 1992 Feb; 11(1):99-106. PubMed ID: 1737644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of a human monoclonal antibody to hepatitis C virus, JRA1 by activation of peripheral blood lymphocytes and hypo-osmolar electrofusion.
    Zimmermann U; Love-Homan L; Gessner P; Clark D; Klöck G; Johlin FC; Neil GA
    Hum Antibodies Hybridomas; 1995; 6(2):77-80. PubMed ID: 7492755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of microfusion techniques to generate human hybridomas.
    Foung S; Perkins S; Kafadar K; Gessner P; Zimmermann U
    J Immunol Methods; 1990 Nov; 134(1):35-42. PubMed ID: 2172386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.