These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 2925254)
21. Flow-Tolerant Adhesion of a Bacterial Pathogen to Human Endothelial Cells Through Interaction With Biglycan. Salo J; Pietikäinen A; Söderström M; Auvinen K; Salmi M; Ebady R; Moriarty TJ; Viljanen MK; Hytönen J J Infect Dis; 2016 May; 213(10):1623-31. PubMed ID: 26740275 [TBL] [Abstract][Full Text] [Related]
22. Initial attachment of Borrelia burgdorferi spirochetes to Vero cells. Schwarzova K; Ciznar I; Svihrova V; Hudeckova H Bratisl Lek Listy; 2019; 120(11):872-875. PubMed ID: 31747771 [TBL] [Abstract][Full Text] [Related]
23. Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Radolf JD; Goldberg MS; Bourell K; Baker SI; Jones JD; Norgard MV Infect Immun; 1995 Jun; 63(6):2154-63. PubMed ID: 7768594 [TBL] [Abstract][Full Text] [Related]
24. Characterization of Borrelia burgdorferi Binding to Mammalian Cells and Extracellular Matrix. Lin YP; Leong JM Methods Mol Biol; 2018; 1690():57-67. PubMed ID: 29032536 [TBL] [Abstract][Full Text] [Related]
25. Solving a sticky problem: new genetic approaches to host cell adhesion by the Lyme disease spirochete. Coburn J; Fischer JR; Leong JM Mol Microbiol; 2005 Sep; 57(5):1182-95. PubMed ID: 16101994 [TBL] [Abstract][Full Text] [Related]
26. Invasion and cytopathic killing of human lymphocytes by spirochetes causing Lyme disease. Dorward DW; Fischer ER; Brooks DM Clin Infect Dis; 1997 Jul; 25 Suppl 1():S2-8. PubMed ID: 9233657 [TBL] [Abstract][Full Text] [Related]
27. Adaptation of the Lyme disease spirochaete to the mammalian host environment results in enhanced glycosaminoglycan and host cell binding. Parveen N; Caimano M; Radolf JD; Leong JM Mol Microbiol; 2003 Mar; 47(5):1433-44. PubMed ID: 12603746 [TBL] [Abstract][Full Text] [Related]
28. Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells. Wooten RM; Modur VR; McIntyre TM; Weis JJ J Immunol; 1996 Nov; 157(10):4584-90. PubMed ID: 8906837 [TBL] [Abstract][Full Text] [Related]
29. Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils. Tuominen-Gustafsson H; Penttinen M; Hytönen J; Viljanen MK BMC Microbiol; 2006 Oct; 6():92. PubMed ID: 17049082 [TBL] [Abstract][Full Text] [Related]
31. A single recombinant plasmid expressing two major outer surface proteins of the Lyme disease spirochete. Howe TR; Mayer LW; Barbour AG Science; 1985 Feb; 227(4687):645-6. PubMed ID: 3969554 [TBL] [Abstract][Full Text] [Related]
32. Binding of the complement inhibitor C4b-binding protein to Lyme disease Borreliae. Pietikäinen J; Meri T; Blom AM; Meri S Mol Immunol; 2010 Mar; 47(6):1299-305. PubMed ID: 20022381 [TBL] [Abstract][Full Text] [Related]
33. Remarkable diversity of tick or mammalian-associated Borreliae in the metropolitan San Francisco Bay Area, California. Fedorova N; Kleinjan JE; James D; Hui LT; Peeters H; Lane RS Ticks Tick Borne Dis; 2014 Oct; 5(6):951-61. PubMed ID: 25129859 [TBL] [Abstract][Full Text] [Related]
34. Resistance to tick-borne spirochete challenge induced by Borrelia burgdorferi strains that differ in expression of outer surface proteins. Kurtti TJ; Munderloh UG; Hughes CA; Engstrom SM; Johnson RC Infect Immun; 1996 Oct; 64(10):4148-53. PubMed ID: 8926082 [TBL] [Abstract][Full Text] [Related]
35. Ultrastructure of Borrelia burgdorferi in tissues of patients with Lyme disease. Hulínská D; Jirous J; Valesová M; Herzogová J J Basic Microbiol; 1989; 29(2):73-83. PubMed ID: 2709313 [TBL] [Abstract][Full Text] [Related]
36. Complement evasion by the Lyme disease spirochete Borrelia burgdorferi grown in host-derived tissue co-cultures: role of fibronectin in complement-resistance. Güner ES Experientia; 1996 Apr; 52(4):364-72. PubMed ID: 8620942 [TBL] [Abstract][Full Text] [Related]
37. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro. Böggemeyer E; Stehle T; Schaible UE; Hahne M; Vestweber D; Simon MM Cell Adhes Commun; 1994 Jun; 2(2):145-57. PubMed ID: 7521760 [TBL] [Abstract][Full Text] [Related]
38. Comparison of Growth of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto at Five Different Temperatures. Veinović G; Ružić-Sabljić E; Strle F; Cerar T PLoS One; 2016; 11(6):e0157706. PubMed ID: 27310556 [TBL] [Abstract][Full Text] [Related]
39. Variable serum immunoglobulin responses against different Borrelia burgdorferi sensu lato species in a population at risk for and patients with Lyme disease. Bunikis J; Olsén B; Westman G; Bergstroöm S J Clin Microbiol; 1995 Jun; 33(6):1473-8. PubMed ID: 7650170 [TBL] [Abstract][Full Text] [Related]
40. Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. Norman MU; Moriarty TJ; Dresser AR; Millen B; Kubes P; Chaconas G PLoS Pathog; 2008 Oct; 4(10):e1000169. PubMed ID: 18833295 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]