These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 29252986)

  • 41. Can neonicotinoid and pyrrole insecticides manage malaria vector resistance in high pyrethroid resistance areas in Côte d'Ivoire?
    Ekra AK; Edi CAV; Gbalegba GCN; Zahouli JZB; Danho M; Koudou BG
    Malar J; 2024 May; 23(1):160. PubMed ID: 38778399
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anopheles gambiae (s.l.) exhibit high intensity pyrethroid resistance throughout Southern and Central Mali (2016-2018): PBO or next generation LLINs may provide greater control.
    Sovi A; Keita C; Sinaba Y; Dicko A; Traore I; Cisse MBM; Koita O; Dengela D; Flatley C; Bankineza E; Mihigo J; Belemvire A; Carlson J; Fornadel C; Oxborough RM
    Parasit Vectors; 2020 May; 13(1):239. PubMed ID: 32384907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insecticide resistance status of malaria vectors Anopheles gambiae (s.l.) of southwest Burkina Faso and residual efficacy of indoor residual spraying with microencapsulated pirimiphos-methyl insecticide.
    Soma DD; Zogo B; Hien DFS; Hien AS; Kaboré DA; Kientega M; Ouédraogo AG; Pennetier C; Koffi AA; Moiroux N; Dabiré RK
    Parasit Vectors; 2021 Jan; 14(1):58. PubMed ID: 33461621
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficacy of indoor residual spraying with broflanilide (TENEBENAL), a novel meta-diamide insecticide, against pyrethroid-resistant anopheline vectors in northern Tanzania: An experimental hut trial.
    Snetselaar J; Rowland MW; Manunda BJ; Kisengwa EM; Small GJ; Malone DJ; Mosha FW; Kirby MJ
    PLoS One; 2021; 16(3):e0248026. PubMed ID: 33657179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-susceptible Anopheles arabiensis and pyrethroid-resistant Culex quinquefasciatus mosquitoes.
    Oxborough RM; Kitau J; Matowo J; Mndeme R; Feston E; Boko P; Odjo A; Metonnou CG; Irish S; N'guessan R; Mosha FW; Rowland MW
    Trans R Soc Trop Med Hyg; 2010 Oct; 104(10):639-45. PubMed ID: 20850003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Small-scale field testing of alpha-cypermethrin water-dispersible granules in comparison with the recommended wettable powder formulation for indoor residual spraying against malaria vectors in Benin.
    Moiroux N; Djènontin A; Zogo B; Bouraima A; Sidick I; Pigeon O; Pennetier C
    Parasit Vectors; 2018 Sep; 11(1):508. PubMed ID: 30208937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficacy of six neonicotinoid insecticides alone and in combination with deltamethrin and piperonyl butoxide against pyrethroid-resistant Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).
    Darriet F; Chandre F
    Pest Manag Sci; 2013 Aug; 69(8):905-10. PubMed ID: 23208775
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Village-scale (Phase III) evaluation of the efficacy and residual activity of SumiShield
    Uragayala S; Kamaraju R; Tiwari SN; Sreedharan S; Ghosh SK; Valecha N
    Trop Med Int Health; 2018 Jun; 23(6):605-615. PubMed ID: 29602196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combining piperonyl butoxide and dinotefuran restores the efficacy of deltamethrin mosquito nets against resistant Anopheles gambiae (Diptera: Culicidae).
    Darriet F; Chandre F
    J Med Entomol; 2011 Jul; 48(4):952-5. PubMed ID: 21845961
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insecticide resistance status, frequency of L1014F Kdr and G119S Ace-1 mutations, and expression of detoxification enzymes in Anopheles gambiae (s.l.) in two regions of northern Benin in preparation for indoor residual spraying.
    Salako AS; Ahogni I; Aïkpon R; Sidick A; Dagnon F; Sovi A; Sominahouin AA; Agossa F; Iyikirenga L; Akogbeto MC
    Parasit Vectors; 2018 Dec; 11(1):618. PubMed ID: 30509288
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficacy of ACTELLIC 300 CS, pirimiphos methyl, for indoor residual spraying in areas of high vector resistance to pyrethroids and carbamates in Zambia.
    Chanda E; Chanda J; Kandyata A; Phiri FN; Muzia L; Haque U; Baboo KS
    J Med Entomol; 2013 Nov; 50(6):1275-81. PubMed ID: 24843932
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An experimental hut evaluation of PermaNet(®) 3.0, a deltamethrin-piperonyl butoxide combination net, against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes in southern Benin.
    N'Guessan R; Asidi A; Boko P; Odjo A; Akogbeto M; Pigeon O; Rowland M
    Trans R Soc Trop Med Hyg; 2010 Dec; 104(12):758-65. PubMed ID: 20956008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Implications of bio-efficacy and persistence of insecticides when indoor residual spraying and long-lasting insecticide nets are combined for malaria prevention.
    Okumu FO; Chipwaza B; Madumla EP; Mbeyela E; Lingamba G; Moore J; Ntamatungro AJ; Kavishe DR; Moore SJ
    Malar J; 2012 Nov; 11():378. PubMed ID: 23164062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficacy of various insecticides recommended for indoor residual spraying: pirimiphos methyl, potential alternative to bendiocarb for pyrethroid resistance management in Benin, West Africa.
    Agossa FR; Aïkpon R; Azondékon R; Govoetchan R; Padonnou GG; Oussou O; Oké-Agbo F; Akogbéto MC
    Trans R Soc Trop Med Hyg; 2014 Feb; 108(2):84-91. PubMed ID: 24463582
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamics of pyrethroid resistance in malaria vectors in southern Benin following a large scale implementation of vector control interventions.
    Yahouédo GA; Cornelie S; Djègbè I; Ahlonsou J; Aboubakar S; Soares C; Akogbéto M; Corbel V
    Parasit Vectors; 2016 Jul; 9(1):385. PubMed ID: 27378358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficacy of Pirikool® 300 CS used for indoor residual spraying on three different substrates in semi-field experimental conditions.
    Fodjo BK; Tchicaya E; Yao LA; Edi C; Ouattara AF; Kouassi LB; Yokoly FN; Benjamin KG
    Malar J; 2024 May; 23(1):148. PubMed ID: 38750468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Do holes in long-lasting insecticidal nets compromise their efficacy against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus? Results from a release-recapture study in experimental huts.
    Randriamaherijaona S; Briët OJ; Boyer S; Bouraima A; N'Guessan R; Rogier C; Corbel V
    Malar J; 2015 Aug; 14():332. PubMed ID: 26310788
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin.
    N'Guessan R; Corbel V; Akogbéto M; Rowland M
    Emerg Infect Dis; 2007 Feb; 13(2):199-206. PubMed ID: 17479880
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An experimental hut study evaluating the impact of pyrethroid-only and PBO nets alone and in combination with pirimiphos-methyl-based IRS in Ethiopia.
    Yewhalaw D; Balkew M; Zemene E; Chibsa S; Mumba P; Flatley C; Seyoum A; Yoshimizu M; Zohdy S; Dengela D; Irish S
    Malar J; 2022 Aug; 21(1):238. PubMed ID: 35987650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Indoor residual spraying with microencapsulated DEET repellent (N, N-diethyl-m-toluamide) for control of Anopheles arabiensis and Culex quinquefasciatus.
    Kitau J; Oxborough R; Matowo J; Mosha F; Magesa SM; Rowland M
    Parasit Vectors; 2014 Sep; 7():446. PubMed ID: 25249021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.