These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
633 related articles for article (PubMed ID: 29253086)
21. Mitochondrial DNA in CSF distinguishes LRRK2 from idiopathic Parkinson's disease. Podlesniy P; Vilas D; Taylor P; Shaw LM; Tolosa E; Trullas R Neurobiol Dis; 2016 Oct; 94():10-7. PubMed ID: 27260835 [TBL] [Abstract][Full Text] [Related]
22. Altered Development of Synapse Structure and Function in Striatum Caused by Parkinson's Disease-Linked LRRK2-G2019S Mutation. Matikainen-Ankney BA; Kezunovic N; Mesias RE; Tian Y; Williams FM; Huntley GW; Benson DL J Neurosci; 2016 Jul; 36(27):7128-41. PubMed ID: 27383589 [TBL] [Abstract][Full Text] [Related]
25. Interaction of LRRK2 and α-Synuclein in Parkinson's Disease. Daher JP Adv Neurobiol; 2017; 14():209-226. PubMed ID: 28353286 [TBL] [Abstract][Full Text] [Related]
26. Upregulation of the p53-p21 pathway by G2019S LRRK2 contributes to the cellular senescence and accumulation of α-synuclein. Ho DH; Seol W; Son I Cell Cycle; 2019 Feb; 18(4):467-475. PubMed ID: 30712480 [TBL] [Abstract][Full Text] [Related]
27. The Parkinson's disease related mutant VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress. McCarron KR; Elcocks H; Mortiboys H; Urbé S; Clague MJ Biochem J; 2024 Feb; 481(4):265-278. PubMed ID: 38299383 [TBL] [Abstract][Full Text] [Related]
28. Alpha galactosidase A activity in Parkinson's disease. Alcalay RN; Wolf P; Levy OA; Kang UJ; Waters C; Fahn S; Ford B; Kuo SH; Vanegas N; Shah H; Liong C; Narayan S; Pauciulo MW; Nichols WC; Gan-Or Z; Rouleau GA; Chung WK; Oliva P; Keutzer J; Marder K; Zhang XK Neurobiol Dis; 2018 Apr; 112():85-90. PubMed ID: 29369793 [TBL] [Abstract][Full Text] [Related]
29. LRRK2 activity does not dramatically alter α-synuclein pathology in primary neurons. Henderson MX; Peng C; Trojanowski JQ; Lee VMY Acta Neuropathol Commun; 2018 May; 6(1):45. PubMed ID: 29855356 [TBL] [Abstract][Full Text] [Related]
31. LRRK2, GBA and their interaction in the regulation of autophagy: implications on therapeutics in Parkinson's disease. Pang SY; Lo RCN; Ho PW; Liu HF; Chang EES; Leung CT; Malki Y; Choi ZY; Wong WY; Kung MH; Ramsden DB; Ho SL Transl Neurodegener; 2022 Jan; 11(1):5. PubMed ID: 35101134 [TBL] [Abstract][Full Text] [Related]
32. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Dzamko N; Gysbers AM; Bandopadhyay R; Bolliger MF; Uchino A; Zhao Y; Takao M; Wauters S; van de Berg WD; Takahashi-Fujigasaki J; Nichols RJ; Holton JL; Murayama S; Halliday GM Mov Disord; 2017 Mar; 32(3):423-432. PubMed ID: 27911006 [TBL] [Abstract][Full Text] [Related]
33. Olfactory deficits and cardiac 123I-MIBG in Parkinson's disease related to the LRRK2 R1441G and G2019S mutations. Ruiz-Martínez J; Gorostidi A; Goyenechea E; Alzualde A; Poza JJ; Rodríguez F; Bergareche A; Moreno F; López de Munain A; Martí Massó JF Mov Disord; 2011 Sep; 26(11):2026-31. PubMed ID: 21611983 [TBL] [Abstract][Full Text] [Related]
34. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Ho PW; Leung CT; Liu H; Pang SY; Lam CS; Xian J; Li L; Kung MH; Ramsden DB; Ho SL Autophagy; 2020 Feb; 16(2):347-370. PubMed ID: 30983487 [TBL] [Abstract][Full Text] [Related]
35. Exhaustion of mitochondrial and autophagic reserve may contribute to the development of LRRK2 Juárez-Flores DL; González-Casacuberta I; Ezquerra M; Bañó M; Carmona-Pontaque F; Catalán-García M; Guitart-Mampel M; Rivero JJ; Tobias E; Milisenda JC; Tolosa E; Marti MJ; Fernández-Santiago R; Cardellach F; Morén C; Garrabou G J Transl Med; 2018 Jun; 16(1):160. PubMed ID: 29884186 [TBL] [Abstract][Full Text] [Related]
36. Alzheimer's disease tau is a prominent pathology in LRRK2 Parkinson's disease. Henderson MX; Sengupta M; Trojanowski JQ; Lee VMY Acta Neuropathol Commun; 2019 Nov; 7(1):183. PubMed ID: 31733655 [TBL] [Abstract][Full Text] [Related]
37. α-synuclein (SNCA) but not dynamin 3 (DNM3) influences age at onset of leucine-rich repeat kinase 2 (LRRK2) Parkinson's disease in Spain. Fernández-Santiago R; Garrido A; Infante J; González-Aramburu I; Sierra M; Fernández M; Valldeoriola F; Muñoz E; Compta Y; Martí MJ; Ríos J; Tolosa E; Ezquerra M; Mov Disord; 2018 Apr; 33(4):637-641. PubMed ID: 29473656 [TBL] [Abstract][Full Text] [Related]
38. Cerebrospinal fluid biomarkers and clinical features in leucine-rich repeat kinase 2 (LRRK2) mutation carriers. Vilas D; Shaw LM; Taylor P; Berg D; Brockmann K; Aasly J; Marras C; Pont-Sunyer C; Ríos J; Marek K; Tolosa E Mov Disord; 2016 Jun; 31(6):906-14. PubMed ID: 27041685 [TBL] [Abstract][Full Text] [Related]
40. Mutations in the Parkinson's disease genes, Leucine Rich Repeat Kinase 2 (LRRK2) and Glucocerebrosidase (GBA), are not associated with essential tremor. Clark LN; Kisselev S; Park N; Ross B; Verbitsky M; Rios E; Alcalay RN; Lee JH; Louis ED Parkinsonism Relat Disord; 2010 Feb; 16(2):132-5. PubMed ID: 19527940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]