These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 29253254)

  • 1. Dissociated Representations of Deceptive Intentions and Kinematic Adaptations in the Observer's Motor System.
    Finisguerra A; Amoruso L; Makris S; Urgesi C
    Cereb Cortex; 2018 Jan; 28(1):33-47. PubMed ID: 29253254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observing back pain provoking lifting actions modulates corticomotor excitability of the observer's primary motor cortex.
    Lehner R; Meesen R; Wenderoth N
    Neuropsychologia; 2017 Jul; 101():1-9. PubMed ID: 28478241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticipatory planning reveals segmentation of cortical motor output during action observation.
    Janssen L; Steenbergen B; Carson RG
    Cereb Cortex; 2015 Jan; 25(1):192-201. PubMed ID: 23960201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct mapping rather than motor prediction subserves modulation of corticospinal excitability during observation of actions in real time.
    Gueugneau N; Mc Cabe SI; Villalta JI; Grafton ST; Della-Maggiore V
    J Neurophysiol; 2015 Jun; 113(10):3700-7. PubMed ID: 25810483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalization of motor resonance during the observation of hand, mouth, and eye movements.
    Finisguerra A; Maffongelli L; Bassolino M; Jacono M; Pozzo T; D'Ausilio A
    J Neurophysiol; 2015 Oct; 114(4):2295-304. PubMed ID: 26289463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Relative Influence of Goal and Kinematics on Corticospinal Excitability Depends on the Information Provided to the Observer.
    Mc Cabe SI; Villalta JI; Saunier G; Grafton ST; Della-Maggiore V
    Cereb Cortex; 2015 Aug; 25(8):2229-37. PubMed ID: 24591524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contextual expectations shape the motor coding of movement kinematics during the prediction of observed actions: A TMS study.
    Bianco V; Finisguerra A; D'Argenio G; Boscarol S; Urgesi C
    Neuroimage; 2024 Aug; 297():120702. PubMed ID: 38909762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force requirements of observed object lifting are encoded by the observer's motor system: a TMS study.
    Alaerts K; Senot P; Swinnen SP; Craighero L; Wenderoth N; Fadiga L
    Eur J Neurosci; 2010 Mar; 31(6):1144-53. PubMed ID: 20377627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equal kinematics and visual context but different purposes: Observer's moral rules modulate motor resonance.
    Craighero L; Mele S
    Cortex; 2018 Jul; 104():1-11. PubMed ID: 29715581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changing ideas about others' intentions: updating prior expectations tunes activity in the human motor system.
    Jacquet PO; Roy AC; Chambon V; Borghi AM; Salemme R; Farnè A; Reilly KT
    Sci Rep; 2016 May; 6():26995. PubMed ID: 27243157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multiform motor cortical output: Kinematic, predictive and response coding.
    Sartori L; Betti S; Chinellato E; Castiello U
    Cortex; 2015 Sep; 70():169-78. PubMed ID: 25727547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of an action with a congruent contextual background facilitates corticospinal excitability: A combined TMS and eye-tracking experiment.
    Riach M; Holmes PS; Franklin ZC; Wright DJ
    Neuropsychologia; 2018 Oct; 119():157-164. PubMed ID: 30098329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human movements and abstract motion displays activate different processes in the observer's motor system.
    Agosta S; Battelli L; Casile A
    Neuroimage; 2016 Apr; 130():184-193. PubMed ID: 26854559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor Expectations Bias Motor Resonance during Observation of Object Lifting: The Causal Role of pSTS.
    Rens G; van Polanen V; Botta A; Gann MA; Orban de Xivry JJ; Davare M
    J Neurosci; 2020 May; 40(20):3995-4009. PubMed ID: 32284337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action observation effects reflect the modular organization of the human motor system.
    Hilt PM; Bartoli E; Ferrari E; Jacono M; Fadiga L; D'Ausilio A
    Cortex; 2017 Oct; 95():104-118. PubMed ID: 28866300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observing how others lift light or heavy objects: which visual cues mediate the encoding of muscular force in the primary motor cortex?
    Alaerts K; Swinnen SP; Wenderoth N
    Neuropsychologia; 2010 Jun; 48(7):2082-90. PubMed ID: 20381505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grip-dependent cortico-spinal excitability during grasping imagination and execution.
    Cesari P; Pizzolato F; Fiorio M
    Neuropsychologia; 2011 Jun; 49(7):2121-30. PubMed ID: 21539850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticospinal excitability is modulated by distinct movement patterns during action observation.
    Huntley MK; Muller S; Vallence AM
    Exp Brain Res; 2018 Apr; 236(4):1067-1075. PubMed ID: 29435605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Action simulation plays a critical role in deceptive action recognition.
    Tidoni E; Borgomaneri S; di Pellegrino G; Avenanti A
    J Neurosci; 2013 Jan; 33(2):611-23. PubMed ID: 23303940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difference in phase modulation of corticospinal excitability during the observation of the action of walking, with and without motor imagery.
    Kaneko N; Masugi Y; Yokoyama H; Nakazawa K
    Neuroreport; 2018 Feb; 29(3):169-173. PubMed ID: 29215464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.