These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
499 related articles for article (PubMed ID: 29253315)
1. Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. Dias LM; Dos Santos BV; Albuquerque CJB; Baeta BEL; Pasquini D; Baffi MA J Appl Microbiol; 2018 Mar; 124(3):708-718. PubMed ID: 29253315 [TBL] [Abstract][Full Text] [Related]
2. Use of an (Hemi) Cellulolytic Enzymatic Extract Produced by Aspergilli Species Consortium in the Saccharification of Biomass Sorghum. Dos Santos BV; Rodrigues PO; Albuquerque CJB; Pasquini D; Baffi MA Appl Biochem Biotechnol; 2019 Sep; 189(1):37-48. PubMed ID: 30863986 [TBL] [Abstract][Full Text] [Related]
3. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Kang SW; Park YS; Lee JS; Hong SI; Kim SW Bioresour Technol; 2004 Jan; 91(2):153-6. PubMed ID: 14592744 [TBL] [Abstract][Full Text] [Related]
4. Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and 3-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164. Kumar R; Singh RP Appl Biochem Biotechnol; 2001; 96(1-3):71-82. PubMed ID: 11783902 [TBL] [Abstract][Full Text] [Related]
5. Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production. Santos BS; Gomes AF; Franciscon EG; Oliveira JM; Baffi MA Braz J Microbiol; 2015; 46(3):903-10. PubMed ID: 26413077 [TBL] [Abstract][Full Text] [Related]
6. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292 [TBL] [Abstract][Full Text] [Related]
7. Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. Camassola M; Dillon AJ J Appl Microbiol; 2007 Dec; 103(6):2196-204. PubMed ID: 18045402 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
9. The capability of endophytic fungi for production of hemicellulases and related enzymes. Robl D; Delabona Pda S; Mergel CM; Rojas JD; Costa Pdos S; Pimentel IC; Vicente VA; da Cruz Pradella JG; Padilla G BMC Biotechnol; 2013 Oct; 13():94. PubMed ID: 24175970 [TBL] [Abstract][Full Text] [Related]
10. An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production. Hernández C; Milagres AMF; Vázquez-Marrufo G; Muñoz-Páez KM; García-Pérez JA; Alarcón E Folia Microbiol (Praha); 2018 Jul; 63(4):467-478. PubMed ID: 29423709 [TBL] [Abstract][Full Text] [Related]
11. Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Falkoski DL; Guimarães VM; de Almeida MN; Alfenas AC; Colodette JL; de Rezende ST Bioresour Technol; 2013 Feb; 130():296-305. PubMed ID: 23313674 [TBL] [Abstract][Full Text] [Related]
12. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Idris ASO; Pandey A; Rao SS; Sukumaran RK Bioresour Technol; 2017 Oct; 242():265-271. PubMed ID: 28366693 [TBL] [Abstract][Full Text] [Related]
13. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. Santos GB; de Sousa Francisco Filho Á; Rêgo da Silva Rodrigues J; Rodrigues de Souza R J Environ Manage; 2022 Mar; 305():114431. PubMed ID: 34995940 [TBL] [Abstract][Full Text] [Related]
14. Exploring thermophilic cellulolytic enzyme production potential of Aspergillus fumigatus by the solid-state fermentation of wheat straw. Mehboob N; Asad MJ; Asgher M; Gulfraz M; Mukhtar T; Mahmood RT Appl Biochem Biotechnol; 2014 Apr; 172(7):3646-55. PubMed ID: 24562980 [TBL] [Abstract][Full Text] [Related]
15. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. Sohail M; Siddiqi R; Ahmad A; Khan SA N Biotechnol; 2009 Sep; 25(6):437-41. PubMed ID: 19552887 [TBL] [Abstract][Full Text] [Related]
16. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. Gawande PV; Kamat MY J Appl Microbiol; 1999 Oct; 87(4):511-9. PubMed ID: 10583678 [TBL] [Abstract][Full Text] [Related]
17. Effect of physical and chemical properties of oil palm empty fruit bunch, decanter cake and sago pith residue on cellulases production by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Zanirun Z; Bahrin EK; Lai-Yee P; Hassan MA; Abd-Aziz S Appl Biochem Biotechnol; 2014 Jan; 172(1):423-35. PubMed ID: 24085387 [TBL] [Abstract][Full Text] [Related]
18. Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9. Das A; Paul T; Halder SK; Maity C; Das Mohapatra PK; Pati BR; Mondal KC Pol J Microbiol; 2013; 62(1):31-43. PubMed ID: 23829075 [TBL] [Abstract][Full Text] [Related]
19. Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps. Pirota RD; Baleeiro FC; Farinas CS Biotechnol Prog; 2013; 29(6):1430-40. PubMed ID: 24115639 [TBL] [Abstract][Full Text] [Related]
20. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Bansal N; Tewari R; Soni R; Soni SK Waste Manag; 2012 Jul; 32(7):1341-6. PubMed ID: 22503148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]