BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 29253507)

  • 1. Long negative feedback loop enhances period tunability of biological oscillators.
    Maeda K; Kurata H
    J Theor Biol; 2018 Mar; 440():21-31. PubMed ID: 29253507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical study of robustness of a negative feedback oscillator by multiparameter sensitivity.
    Maeda K; Kurata H
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S1. PubMed ID: 25605374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast, robust and tunable synthetic gene oscillator.
    Stricker J; Cookson S; Bennett MR; Mather WH; Tsimring LS; Hasty J
    Nature; 2008 Nov; 456(7221):516-9. PubMed ID: 18971928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust, tunable biological oscillations from interlinked positive and negative feedback loops.
    Tsai TY; Choi YS; Ma W; Pomerening JR; Tang C; Ferrell JE
    Science; 2008 Jul; 321(5885):126-9. PubMed ID: 18599789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic negative feedback systems: what is the chance of oscillation?
    Tonnelier A
    Bull Math Biol; 2014 May; 76(5):1155-93. PubMed ID: 24756857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entrainment of a population of synthetic genetic oscillators.
    Mondragón-Palomino O; Danino T; Selimkhanov J; Tsimring L; Hasty J
    Science; 2011 Sep; 333(6047):1315-1319. PubMed ID: 21885786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks.
    Tian XJ; Zhang XP; Liu F; Wang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011926. PubMed ID: 19658748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillations in well-mixed, deterministic feedback systems: Beyond ring oscillators.
    Page KM
    J Theor Biol; 2019 Nov; 481():44-53. PubMed ID: 31059715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the tunability of the dual-feedback genetic oscillator.
    Joshi YJ; Jawale YK; Athale CA
    Phys Rev E; 2020 Jan; 101(1-1):012417. PubMed ID: 32069648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel interaction perturbation analysis reveals a comprehensive regulatory principle underlying various biochemical oscillators.
    Kang JH; Cho KH
    BMC Syst Biol; 2017 Oct; 11(1):95. PubMed ID: 29017496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.
    Tomazou M; Barahona M; Polizzi KM; Stan GB
    Cell Syst; 2018 Apr; 6(4):508-520.e5. PubMed ID: 29680377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops.
    Huang B; Tian X; Liu F; Wang W
    Phys Rev E; 2016 Nov; 94(5-1):052413. PubMed ID: 27967134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous Time Constants Promote Oscillations in Negative Feedback Loops.
    Blanchini F; Cuba Samaniego C; Franco E; Giordano G
    ACS Synth Biol; 2018 Jun; 7(6):1481-1487. PubMed ID: 29676894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robustness of synthetic oscillators in growing and dividing cells.
    Paijmans J; Lubensky DK; Rein Ten Wolde P
    Phys Rev E; 2017 May; 95(5-1):052403. PubMed ID: 28618495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow activator degradation reduces the robustness of a coupled feedback loop oscillator.
    Sayut DJ; Sun L
    Mol Biosyst; 2010 Aug; 6(8):1469-74. PubMed ID: 20505881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Load capacity improvements in nucleic acid based systems using partially open feedback control.
    Kulkarni V; Kharisov E; Hovakimyan N; Kim J
    ACS Synth Biol; 2014 Aug; 3(8):617-26. PubMed ID: 24946099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incoherent Inputs Enhance the Robustness of Biological Oscillators.
    Li Z; Liu S; Yang Q
    Cell Syst; 2017 Jul; 5(1):72-81.e4. PubMed ID: 28750200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative analysis of synthetic genetic oscillators.
    Purcell O; Savery NJ; Grierson CS; di Bernardo M
    J R Soc Interface; 2010 Nov; 7(52):1503-24. PubMed ID: 20591848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust network topologies for generating oscillations with temperature-independent periods.
    Wu L; Ouyang Q; Wang H
    PLoS One; 2017; 12(2):e0171263. PubMed ID: 28152061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of an Ultradian Oscillator in Mammalian Cells by a Synthetic Biology Approach.
    Santorelli M; Perna D; Isomura A; Garzilli I; Annunziata F; Postiglione L; Tumaini B; Kageyama R; di Bernardo D
    ACS Synth Biol; 2018 May; 7(5):1447-1455. PubMed ID: 29727574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.