BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 29253557)

  • 1. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.
    Du K; Zhong Z; Fang C; Dai W; Shen Y; Gan X; He S
    Dev Comp Immunol; 2018 Apr; 81():324-333. PubMed ID: 29253557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global characterization of interferon regulatory factor (IRF) genes in vertebrates: glimpse of the diversification in evolution.
    Huang B; Qi ZT; Xu Z; Nie P
    BMC Immunol; 2010 May; 11():22. PubMed ID: 20444275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.
    Opazo JC; Lee AP; Hoffmann FG; Toloza-Villalobos J; Burmester T; Venkatesh B; Storz JF
    Mol Biol Evol; 2015 Jul; 32(7):1684-94. PubMed ID: 25743544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic evolution of immune system regulators: the history of the interferon regulatory factor family.
    Nehyba J; Hrdlicková R; Bose HR
    Mol Biol Evol; 2009 Nov; 26(11):2539-50. PubMed ID: 19638535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the IRF Family in Salmonids.
    Clark TC; Boudinot P; Collet B
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33567584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates.
    Zhang Z; Liu J; Li M; Yang H; Zhang C
    PLoS One; 2012; 7(11):e49265. PubMed ID: 23166625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early Evolution of Vertebrate Mybs: An Integrative Perspective Combining Synteny, Phylogenetic, and Gene Expression Analyses.
    Campanini EB; Vandewege MW; Pillai NE; Tay BH; Jones JL; Venkatesh B; Hoffmann FG
    Genome Biol Evol; 2015 Oct; 7(11):3009-21. PubMed ID: 26475318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.
    Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA
    Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DupScan: predicting and visualizing vertebrate genome duplication database.
    Lu J; Huang P; Sun J; Liu J
    Nucleic Acids Res; 2023 Jan; 51(D1):D906-D912. PubMed ID: 36018807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gain and loss of genes during 600 million years of vertebrate evolution.
    Blomme T; Vandepoele K; De Bodt S; Simillion C; Maere S; Van de Peer Y
    Genome Biol; 2006; 7(5):R43. PubMed ID: 16723033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication.
    Braasch I; Volff JN; Schartl M
    Mol Biol Evol; 2009 Apr; 26(4):783-99. PubMed ID: 19174480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlative analysis of transcriptome and proteome in Penaeus vannamei reveals key signaling pathways are involved in IFN-like antiviral regulation mediated by interferon regulatory factor (PvIRF).
    Liu Y; He Y; Cao J; Lu H; Zou R; Zuo Z; Li R; Zhang Y; Sun J
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127138. PubMed ID: 37776923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Amphioxus IFN Regulatory Factor Family Reveals an Archaic Signaling Framework for Innate Immune Response.
    Yuan S; Zheng T; Li P; Yang R; Ruan J; Huang S; Wu Z; Xu A
    J Immunol; 2015 Dec; 195(12):5657-66. PubMed ID: 26573836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.
    Schwarze K; Burmester T
    Biochim Biophys Acta; 2013 Sep; 1834(9):1801-12. PubMed ID: 23360762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evolutionary perspective on the systems of adaptive immunity.
    Müller V; de Boer RJ; Bonhoeffer S; Szathmáry E
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):505-528. PubMed ID: 28745003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel evolution of amphioxus and vertebrate small-scale gene duplications.
    Brasó-Vives M; Marlétaz F; Echchiki A; Mantica F; Acemel RD; Gómez-Skarmeta JL; Hartasánchez DA; Le Targa L; Pontarotti P; Tena JJ; Maeso I; Escriva H; Irimia M; Robinson-Rechavi M
    Genome Biol; 2022 Nov; 23(1):243. PubMed ID: 36401278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.
    Liu Y; Zhang YB; Liu TK; Gui JF
    PLoS One; 2013; 8(6):e66859. PubMed ID: 23818968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of vertebrate tetraspanins: gene loss, retention, and massive positive selection after whole genome duplications.
    Huang S; Tian H; Chen Z; Yu T; Xu A
    BMC Evol Biol; 2010 Oct; 10():306. PubMed ID: 20939927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates.
    Cañestro C; Albalat R; Irimia M; Garcia-Fernàndez J
    Semin Cell Dev Biol; 2013 Feb; 24(2):83-94. PubMed ID: 23291262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates.
    Singh PP; Isambert H
    Nucleic Acids Res; 2020 Jan; 48(D1):D724-D730. PubMed ID: 31612943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.