These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29253903)

  • 1. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations.
    Nikolic N; Schreiber F; Dal Co A; Kiviet DJ; Bergmiller T; Littmann S; Kuypers MMM; Ackermann M
    PLoS Genet; 2017 Dec; 13(12):e1007122. PubMed ID: 29253903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations.
    Nikolic N; Barner T; Ackermann M
    BMC Microbiol; 2013 Nov; 13():258. PubMed ID: 24238347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli.
    Koirala S; Wang X; Rao CV
    J Bacteriol; 2016 Feb; 198(3):386-93. PubMed ID: 26527647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial sugar utilization gives rise to distinct single-cell behaviours.
    Afroz T; Biliouris K; Kaznessis Y; Beisel CL
    Mol Microbiol; 2014 Sep; 93(6):1093-1103. PubMed ID: 24976172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Black and white with some shades of grey: the diverse responses of inducible metabolic pathways in Escherichia coli.
    Rao CV; Koirala S
    Mol Microbiol; 2014 Sep; 93(6):1079-83. PubMed ID: 25069377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of sugars, alcohols, and organic acids with transcriptional microarrays.
    Baev MV; Baev D; Radek AJ; Campbell JW
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):310-6. PubMed ID: 16628448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic bistability in Escherichia coli's central carbon metabolism.
    Kotte O; Volkmer B; Radzikowski JL; Heinemann M
    Mol Syst Biol; 2014 Jul; 10(7):736. PubMed ID: 24987115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1053-62. PubMed ID: 17965859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic switching in the sugar phosphotransferase system of Escherichia coli.
    Thattai M; Shraiman BI
    Biophys J; 2003 Aug; 85(2):744-54. PubMed ID: 12885625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli.
    Baldazzi V; Ropers D; Geiselmann J; Kahn D; de Jong H
    J Theor Biol; 2012 Feb; 295():100-15. PubMed ID: 22138386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transport and mediation mechanisms of the common sugars in Escherichia coli.
    Luo Y; Zhang T; Wu H
    Biotechnol Adv; 2014; 32(5):905-19. PubMed ID: 24780155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis.
    Flores S; Flores N; de Anda R; González A; Escalante A; Sigala JC; Gosset G; Bolívar F
    J Mol Microbiol Biotechnol; 2005; 10(1):51-63. PubMed ID: 16491026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli.
    Park JM; Vinuselvi P; Lee SK
    Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol.
    Rodrigues AL; Becker J; de Souza Lima AO; Porto LM; Wittmann C
    Biotechnol Bioeng; 2014 Nov; 111(11):2280-9. PubMed ID: 24889673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli.
    Leiby N; Marx CJ
    PLoS Biol; 2014 Feb; 12(2):e1001789. PubMed ID: 24558347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Observation of the Dynamics of Single-Cell Metabolic Activity during Microbial Diauxic Growth.
    McClelland HLO; Jones C; Chubiz LM; Fike DA; Bradley AS
    mBio; 2020 Mar; 11(2):. PubMed ID: 32127448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion.
    Zhang GC; Liu JJ; Kong II; Kwak S; Jin YS
    Curr Opin Chem Biol; 2015 Dec; 29():49-57. PubMed ID: 26432418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.